lectures Legi by Joachim Peinke

- 1) "Multipoint Statistics of Turbulence and its Stochastic Description" Friday 7/12, 10h30-12h:
- 2) "Nonequilibrium Thermodynamics of Turbulence, Fluctuation Theories and Rare Events as Negative Entropy Events" Monday10/12, 10h30-12 h:
- 3) "Wind Energy Driven by Turbulence (Applied Turbulence)" Friday 14/12, 10h30-12 h.

content

Part I: energy and wind

Part II: basics of wind energy conversion

Part III: How much understanding of turbulence do we need?

Grenoble 2018

energy resources - oil

every day

85 million barrel oil per day

- 400 000 trucks > 7000km (> 4000 Miles)

natural production rate

3-WEC

Nature, 3 June 1999.

energy and environment

U.S. Department of Commerce / National Oceanic & Atmospheric Administration / NOAA Research

Earth System Research Laboratory Global Monitoring Division

Part I: energy and wind - environment

aim 2° or 1.5° limit

in the way we are using energy today we have in 10 years passed the 1.5° limit with our CO2

-> need new energy concept

Mercator Research Institute on Global Commons and Climate Change

content

Part I: energy and wind

Part II: basics of wind energy conversion

Part III: How much understanding of turbulence do we need?

Grenoble 2018

modern wind turbines

power from wind

$$E_{wind} = \frac{1}{2}mu^2$$

$$P_{wind} = \dot{E}_{wind} \qquad \dot{m} = \rho \dot{V}$$
$$= \frac{1}{2} \dot{m} u^2 \qquad = \rho \dot{A} \cdot u$$

$$P_{wind} = \frac{1}{2}\rho A u^3$$

WEC
$$P_{WEC} = c_P \frac{1}{2} \rho A u^3$$

$$c_P \le 0.59$$

Betz-Joukowsky limit

Extracted kinetic energy and extracted power

Extracted kinetic energy and extracted power

$$P_{WEC} = c_p \frac{1}{2} \rho A_2 u_1^3$$

$$c_p = \frac{P_{WEC}}{1/2\rho A_2 u_1^3} = \frac{P_{ext}}{1/2\rho A_2 u_1^3}$$

$$P_{ext} = \frac{1}{2} \dot{m} \left(u_1^2 - u_3^2 \right)$$

$$c_p = \frac{\dot{m}(u_1^2 - u_3^2)}{\rho A_2 u_1^3}$$

c_P should become maximal
$$\dot{m}$$
 is unknown

Approach: free-stream air flow and conservation of mass flow

Extracted kinetic energy and extracted power

$$P_{WEC} = c_p \frac{1}{2} \rho A_2 u_1^3$$
$$P_{ext} = \frac{1}{2} \dot{m} \left(u_1^2 - u_3^2 \right)$$

-

$$c_p = \frac{\dot{m}(u_1^2 - u_3^2)}{\rho A_2 u_1^3}$$

c_P should become maximal

\dot{m} unknown

$$\dot{m} = \rho \cdot A_2 \cdot u_2$$

$$c_p = \frac{u_2(u_1^2 - u_3^2)}{u_1^3}$$

Find the maximum c_p by taking the first derivative

Substitute u₃/u₁ with x: $c_p(x) = \frac{1}{2} \cdot (1 + x - x^2 - x^3)$

First derivative of $c_p(x)$: $c'_p(x) = \frac{1}{2} \cdot (1 - 2x - 3x^2) \stackrel{!}{=} 0$

For maximum second derivative of possible solution x_{1/2} must smaller than zero:

$$c_p''(x_{1/2}) = \frac{1}{2} \cdot (-2 - 6x) < 0$$

Solution:
$$x = \frac{1}{3} \Rightarrow c_{p_{max.}}(1/3) = \frac{16}{27} \approx 59\%$$

Extractable power as function of u1 and u3

There is an optimal rotational frequency that the blockage results in $\frac{u_3}{u_1} = \frac{1}{3}$, characterized by tip speed ratio $\lambda := \frac{\omega \cdot R}{u_0}$

Limitations of Betz theory - Energy losses

losses:

- Glauert Schmitz theory rotation if wake, conservation of angular momentum
- tip vortex losses
- drag force on profile

summary of conversion

modern wind turbines power from wind

WEC
$$P_{WEC} = c_P \frac{1}{2} \rho A u^3$$

for u = 12 m/s $c_P \leq 0.59$

 $P_{wind} = 1kW/m^2$

modern wind turbines

area = 12469 m² $P_{wind} \leq 12MW$

$$P_{WEC} = c_p \cdot P_{wind}$$

 $c_P \leq 0.59$

$$P_{WEC} \approx 5 - 6MW$$

modern wind turbines size

www.grenoble-lane

largest turbines - close to 10MW Vestas V164 - 9.5MW - for 8.8MW 24GW installed Siemens 167 8 MW Goldwind 6.7 MW

power curve of a wind turbine

Solar / Wind

	sun	wind
power	I kW/m²	I kW/m²
efficiency	15 %	40 %
rated power	150 W/m ²	400 W/m ²
rated power/year (germ.)	1000h	2000h - 3000h
averaged power production	I7 W/m ²	100 - 150 W/m ²

ber person		
el. power 200W	10 m ²	2 m ²
total power 5 kW	300 m ²	50 m ²

Photovoltaic Power Plant, Tucson Electric Power Co., Arizona Nominal Power (August 2002): 2.4 MW Photovoltaics: Multi-crystalline Silicon (ASE), CdTe (BP-Solar), amorphous Silicon

Abbildung: www.globalsolar.com

2.4 MW PV power plant 25.000 m²

> 2.3 MW WEC (E70) 3.800 m² energy pay back few months

cost of energy

Costs for turbine 1 - 2 € / installed Watt (MW 1-2 Million €)

income due to power production: 1 MW-WEC * 2000 h = 2* 10⁶ kWh 5-10 cent/kWh 100,000 - 200,000 €

cost estimation depend crucially on wind speed.

which consequence has an 5% error in the estimated wind speed?

$$P_{wind} = \frac{1}{2}\rho A u^3$$

Propagation of uncertainty:

$$\frac{\delta P_{WEC}}{P_{WEC}} = 3\frac{\delta u}{u}$$

nee to know well the inflow conditions

content

Part I: energy and wind

Part II: basics of wind energy conversion

Part III: Inflow: How much understanding of turbulence do we need?

Grenoble 2018

boundary layer (AML - atmospheric boundary layer)

wind resource boundary layer

wind characterisation after common procedure

annual mean wind speed
how often which wind speed
on hub height

$$Prob(u) = \left(\frac{k}{A}\right) \cdot \left(\frac{u}{A}\right)^{k-1} \cdot e^{-\left(\frac{u}{A}\right)^{k}}$$

Weibull distribution - parameters for different orography

A scaling and k form parameter

$$Prob(u) = \left(\frac{k}{A}\right) \cdot \left(\frac{u}{A}\right)^{k-1} \cdot e^{-\left(\frac{u}{A}\right)^{k}}$$

wind resource boundary layer

wind characterisation after common procedure

- annual mean wind speed
- how often which wind speed on hub height
 height profile

boundary layer (AML - atmospheric boundary layer)

=> summary: standard wind speed characterisation

annual mean - first estimation of wind potential

10 min means at hub height - improved estimation

with power curve - estimation of annual power production

Weibull distribution

- no extrem value statistics 1 D of 2 D Gauß
- orographic parameters $Prob(u) = \left(\frac{k}{A}\right) \cdot \left(\frac{u}{A}\right)^{k-1} \cdot e^{-\left(\frac{u}{A}\right)^{k}}$

height profiles

dependence on roughness

$$\frac{u(z_1)}{u(z_1)} = \left(\frac{u_2}{z_1}\right)$$
$$u(z) = \frac{u^*}{k} ln\left(\frac{z}{z_0}\right)$$

 $u(z_0) \quad (z_0)^{\alpha}$

content

Part I: energy and wind

Part II: basics of wind energy conversion

Part III: Inflow: How much understanding of turbulence do we need?

- critics on standard characterisation

Grenoble 2018

wind measurements and data analysis

▼ characterisation after IEC norm

- 10 min mean value
- turbulence intensity

wind measurements and data analysis

▼ characterisation after IEC norm

statistics of gusts

statistics of gusts

universität Oldenburg

IEC Wind and measured

Observation

EUROMECH 528, S. Basu Uni Texas,

claim - need to understand turbulence

Wind characterisation --

- wind has intermittent statistics not taken into account by IEC norm
- wind turbine is a small scale structure strong intermittency

content

Part I: energy and wind

Part II: basics of wind energy conversion

Part III: Inflow: How much understanding of turbulence do we need?

- critics on standard characterisation
- does turbulence effect a wind turbine ?

modern wind turbines size averages how much of turbulence??

www.grenoble-lanef

incident wind field

Part 2 motivation : dynamics of power conversion

$$P_{WT} = \frac{1}{2}c_p(\lambda) \ \rho \ u_{wind}^3 \cdot A$$

http://phys.org/news/2013-04-turbines-great-turbulence-consequences-grid.html

time series of power production

C A R L V O N O S S I E T Z K Y

universität Oldenburg

time (sec)

statistics of power fluctuations

waiting time	5σ	ΙΟ σ	20 σ
wind (T = I sec)	~ 10 min	~ 4 hours	~I month
Gauss	~ 3 days	~ 5 years	~ 3 million years

wind turbine input: turbulent, noisy wind

dynamic power curve

power P(t)

power increment statistics (intermittent like wind speed) response of a noisy driven system — stochastic analysis

output - power into the grid

challenge - new aerodynamics for turbulent inflow

aviation

- optimised flight in laminar surrounding

wind energy

- operation in fully developed small scale turbulence

free field offshore

new research building WindLab in Oldenburg

