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Introduction Volcanic tremors and clarinet

Volcanic tremors and clarinet

[Backus 1963]

Oscillating reed or rock excitating and interacting with standing waves in
the adjacent reservoir.
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Introduction Volcanic tremors and clarinet

Seiches in a box : standing waves.

T =
2L

n
√

gh
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Introduction ‘Water’ clarinet : movable dam

‘Water’ Clarinet : movable dam


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
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


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A shallow water model Governing equations

A shallow water model
Governing equations













Conservation of angular momentum :

J φ̈ = −mgd cos(φ) + Wd cos(φ) cos θ
∫ XN

L
pdx (1)

J = (M + m)d2

M : effective mass and mass m excess equivalent mass placed on the
paddle : maddedx2 = md2
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A shallow water model Governing equations

A shallow water model
Governing equations

  







φ small angle cos(φ) ≈ 1 and Ż ≈ d φ̇

(M + m)Z̈ = −mg + W cos θ
∫ XN

L
pdx
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A shallow water model Governing equations

Governing equations

  







Equations for 0 < x < L :

ht + (hu)x = 0
ut + uux = −ghx

Boundary conditions :
[hu]x=0 = q
h(x = L) = hL = Z + (X − L) tan θ

Equations for x > L :

h = Z (t) + (X − x) tan θ

ht = Ż = −(hu)x

ut + uux = −px
ρ

Boundary conditions :
u(x → L−) = uL
h(x → L−) = hL = Z +(X −L) tan θ
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A shallow water model Scaling and non dimensional parameters

Scaling and non dimensional parameters

  







Scaling of distances
Reservoir : x̂ = x

X
Paddle : x = (XN − X )ξ + X with l < ξ < 1 ie
x̂ = Rξ + 1 where R = XN−X

X
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A shallow water model Scaling and non dimensional parameters

Scaling and non dimensional parameters

ĥ =
h

(XN − X ) tan θ û =
u√

g(XN − X ) tan θ

t̂ =
t
X√

g(XN−X) tan θ

p̂ =
p

ρg(XN − X ) tan θ
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A shallow water model Scaling and non dimensional parameters

Equations for 0 < x < L :

q=hu
ĥt̂ + q̂x̂ = 0
q̂t̂ + ( q̂2

ĥ )x̂ = −ĥĥx̂

Boundary conditions :
[ĥû]x̂=0 = q̂
ĥL̂ = h(x̂ = 1 + Rl)

Equations for x > L :

ĥ = Ẑ − ξ

ĥt = ˙̂Z = −(ĥû)x̂
p̂ξ = −ûûξ − Rût̂

Boundary conditions :
ûL̂ = u(x̂ = 1 + Rl)
ĥL̂ = h(x̂ = 1 + Rl)
û = q̂L

Ẑ−ξ − R ξ−l
Ẑ−ξ
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A shallow water model Scaling and non dimensional parameters

The equation for the paddle becomes :

I ¨̂Z = −1 + µ

∫ 1

l
pdξ

The system has 5 parameters :

I =
m + M

m R2 tan2 θ the inertia term,

µ =
ρW (XN − X )2 sin θ

m the ratio mass water/mass on paddle

R =
XN − X

X
Q̂ =

q
√g((XN − X ) tan θ)3/2 the flow rate
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A shallow water model Approximation R small

Approximation R small
Equations for x > L :

û =
q̂L

Ẑ − ξ
− R ξ − l

Ẑ − ξ

p̂ξ = −ûûξ − Rût̂

I ¨̂Z = −1 + µ

∫ 1

l
pdξ

Approximation R small : u ≈ qL
Z−ξ = qL

h and pξ ≈ −uuξ

ie Bernoulli is verified under the paddle.
p + 1/2u2 = B = constant = hN + 1/2u2

N = hL + 1/2u2
L

Compact form using the ratio of heights α = hL
hN

:

q2
L

2h3
N

=
Fr2

N
2 =

α2

α + 1 > 1
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A shallow water model Approximation R small

By integrating to get the pressure force, the equation of motion for the
paddle becomes :

I ¨̂Z = −1 +
q4/3

L µ

22/3 F (α)

where

F (α) =
(α− 1)(α2 + 1)

α4/3(α + 1)1/3 (2)

Then the steady state (QL,HL,HN) is :

F (α0) =
22/3

Q4/3
L µ

(3)
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A shallow water model Linear stability analysis

Linear stability analysis

ht + qx = 0 (4)

qt + (
q2

h )x = −hhx (5)

Linearization :
h = H + h′ hL = HL + h′L and hN = HN + Z ′

q = Q + q′
Z = Z0 + Z ′

where H(= HL) and Q(= QL) are the stationary state.

h′t + q′x = 0 (6)

q′t +
2Q
H q′x −

Q2

H h′x = −Hh′x (7)

(8)
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A shallow water model Linear stability analysis

h′t + q′x = 0 (9)

q′t +
2Q
H q′x −

Q2

H h′x = −Hh′x (10)

which can be combined to give :(
∂t +

Q
H ∂x

)2
h′ = Hh′xx

We seek for q′ = q̃e−iωt and h′ = h̃e−iωt which gives :(
−iω +

Q
H ∂x

)2
h̃ = Hh̃xx

We seek solution of the from eλx .

(−iω +
Q
H λ)2 − Hλ2 = 0
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A shallow water model Linear stability analysis

λ1 =
iω

Q
H −
√

H
and λ2 =

iω
Q
H +
√

H

Thus q̃ = A1eλ1x + A2eλ2x and h̃ = A3eλ1x + A4eλ2x

A1 can be chosen arbitrary to 1.

Boundary conditions q’=0 at x=0 so A2 = −1.

Then iωh̃ = q̃x gives A3 = 1
Q
H +
√

H and A4 = − 1
Q
H−
√

H

Variables β = Q
H3/2 and Ω̃ = Ω

(1−β2)
where Ω = ω√

H , q’and h’ are written :

q′ = e−iΩ̃βx2i sin(Ω̃x)e−iωt

h′ = e−iΩ̃βx 2Ω̃

ω

[
cos(Ω̃x)− βi sin(Ω̃x)

]
e−iωt̂
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A shallow water model Linear stability analysis

Paddle and Bernoulli linearized equations :

−ω2IZ ′ =
4
3
µ

22/3 Q1/3q′LF (α0) +
µ

HN

F ′(α0)

F (α0)
(h′L − α0Z ′) (11)

Qq′L − h′LH2
N
α0(α0 + 2)

(α0 + 1)2 =
H2

Nα
2
0Z ′(2α0 + 1)

(α0 + 1)2 (12)

where F ′(α0) = dF
dα(α0)

Matching conditions :

q′L = q′(x = 1 + R l(t), t) ≈ q′(x = 1, t)

and also h′L ≈ h′(x = 1)
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A shallow water model Linear stability analysis

The Bernoulli equation combined with the equation of the paddle and
using the matching conditions gives an equation allowing to determine ω
with :

D(ω;α0, I, µ,Q,H) = 0

Solutions ω = ωr + i ωi found numerically.

Physically : destabilization of a seiche mode maintained by the matching
of time scales.
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A shallow water model Linear stability analysis

Approximation small flow rate : Q � 1 or α0 � 1

In the hypothesis where the flow rate small ie α0 � 1, F (α0) ∼ α4/3
0 and

by keeping the leading order terms in α0 in D(ω) = 0, it gives

Ω ≈ nπ

ie in dimensional variables :

ω = nπ
√

gHL
X

By looking at Ω = nπ + γ, we have the growth rate

γ =
i(1− n2π2I

4α0µ2 )

1
3α0
√
2(−1 + 1

µ + 3n2π2I
4µ2α0

)
(13)
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A shallow water model Linear stability analysis

Numerical application :
madded=3.1g
x=5cm
X=18cm
θ = 60̊

HL ≈ 2cm
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Experiments Experimental setup

Experiments
Experimental setup












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Experiments Results

Steady state
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Experiments Example

Instability of the seiche
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Experiments Example
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Time series for madded=3.1g at 5cm of the pivot
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Experiments Example

Water height : comparison between linear theory and the experiment :

h′ = e−i(ωt−Ω̃βx) 2Ω̃

ω
cos(Ω̃x) for n = 1

Experiment with madded=3.1g at 5 cm of the pivot.

26



Experiments Example

Mode 2 dominant ?
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Experiments Example

Variation of parameters
Variation of madded at q fixed. (q = 1.42× 10−4m3/s)
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Experiments Example

Variation of q at madded fixed. ( madded=8.9 g and x=25 cm)
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Experiments Limits of the model

Limits of the model

Collision with the bottom.

Side effects : flow around the paddle
Friction in the hinge.
Viscosity or surface tension not included.
Validity of the shallow water hypothesis.
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Experiments Evidence of non-linearities

Evidence of non-linearities

Non-linear interaction of modes
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Experiments Evidence of non-linearities

Evidence of non-linearities
Bistabilité
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Experiments Evidence of non-linearities

Subcritical bifurcation ?
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 
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Conclusion

Conclusion

To remember
3 Highlight of the instability.
3 Agreement between theory and observation of seiche modes

To be done
3 Non-linear theory
3 Role of side effects
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Conclusion
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Conclusion

Seiches in a box : standing waves.

T =
2L

n
√

gh
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