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Oscillating reed or rock excitating and interacting with standing waves in
the adjacent reservoir.




Introduction

Seiches in a box : standing waves.
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Introduction

‘Water' Clarinet : movable dam

Mass for counterbalance




A shallow water model Governing equations

A shallow water model

Governing equations

Mass for counterbalance

Pump

Conservation of angular momentum :
.. Xn
J¢ = —mgd cos(¢) + Wd cos(¢) cos€/ pdx
L

J = (M + m)d?
M : effective mass and mass m excess equivalent mass placed on the
paddle : Mygqegx®> = md?
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A shallow water model

Governing equations

h(x,t) Zt)

L X )&n

¢ small angle cos(¢) ~ 1 and Z~do

Xn
(M+m)Z =—mg+ Wcos@/ pdx
L



A shallow water model Governing equations

Governing equations

hix,t)

)

e X )‘(n

Equations for x > L :
Equations for 0 < x < L : h=2Z(t)+ (X —x)tan6
he + (hu)x = 0
us + uuy = —ghy

he = Z = —(hu)y
ug + iy = — B
Boundary conditions :

[hu]x=0 = q Boundary conditions :
hix=L)=h =Z+(X-L)tanf yx—L")=u

h(x > L") =h, = Z+(X—L)tan0
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Scaling and non dimensional parameters

hx,t)

()

) X Xn

Scaling of distances

@ Reservoir : X = ;(—<

e Paddle : x = (Xy — X){+ X with [ <{<1ie

° Xn—X
X=RE{+1 where R= 24
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Scaling and non dimensional parameters

A h u
h: _—_— =
(Xn — X)tan6 ! vVe(Xn — X)tan6
- ‘ = P
N X P pg(Xn — X)tan 6

g(Xny—X)tan0



A shallow water model Scaling and non dimensional parameters

Equations for 0 < x < L :

g=hu

h;y + ;=0

R A2 AA
G + (% )z = —hhg

Boundary conditions :
[hO]s=0 = &
h; = h(x =14 RI)

Equations for x > L :

b = u(}k =1+ RI)
EZ:/Z(&leFIR/)



Scaling and non dimensional parameters
The equation for the paddle becomes :

x 1
/Z:—l—i—u/ pd§
/

The system has 5 parameters :

o /= mt MR2 tan?6 the inertia term,
m
— X)2sin@
o u= pW(Xn = X)”sin the ratio mass water/mass on paddle
m
Xy —X
R=—
° X
° Q = 9 the flow rate

VE((Xy — X) tan 0)3/2
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Approximation R small
Equations for x > L :

LSS Sl
VS Z—¢

. 1
1Z =-1 —i—,u/ pd¢§
/
Approximation R small : v = Zq—jg = 9 and pe = —uug
ie Bernoulli is verified under the paddle.
p+1/2u? = B = constant = hy + 1/2u% = h, +1/2u?

Compact form using the ratio of heights o = ,% :
qf a Fr,%, _ a?

20, 2 a+l > 1




A shallow water model Approximation R small

By integrating to get the pressure force, the equation of motion for the
paddle becomes :

4/3

N q, K
I1Z=-1+ YIE F(«)

where

(a—1)(a® +1)
a?3(a+1)1/3

Fla) =

Then the steady state (Qp, Hr, Hy) is :

Flao) = —73—
Q" u
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Linear stability analysis

ht +gx = 0
q2
q: + (W)X = _hhx

Linearization :
h=H+H hL:HLth;_ and hy = Hy + 7'
g=Q+¢
Z=2+272
where H(= H;) and Q(= Q_) are the stationary state.

h,+q,=0

2 2
P SV



A shallow water model Linear stability analysis

hy+q,=0

2Q
q§+ﬁ 4

2
e

which can be combined to give :

Q 2 r /
(00 20.) 1 = Hi,

We seek for ¢ = ge "“t and K’ = he™ ™! which gives :

QN e
(—/w + H8X> h = Hh,

AX

(—iw + %)\)2 —HX =0

We seek solution of the from e



A shallow water model Linear stability analysis

\ iw 4\ iw
= an =
T e VH T4 VH
Thus g = A1eM* + Are*2X and h= AzeMX 4 AgeteX
A1 can be chosen arbitrary to 1

Boundary conditions q'=0 at x=0 so A;

—1.
Then iwh = gy gives Az = oV and Ay = % 1\/ﬁ
Variables g = H3/2 and Q = (1_952)where Q= \“F g'and h' are written
q = _"ﬁﬁx2isin(§~2x)e_"wt
h/ —IQBX_Q
w

[cos( x) — ﬁ/sm(Qx)] g



A shallow water model Linear stability analysis

Paddle and Bernoulli linearized equations :

217 1/3 LF( ) ' an?
o 2ao(ao+2) B HN 32’(2@04-1)
Q=B g 1 = (a0 4 17

where F'(ap) = %(ao)
Matching conditions :

9 =qd(x=1+RI(t),t)~q(x=1t)
and also h} ~ h'(x =1)



A shallow water model Linear stability analysis

The Bernoulli equation combined with the equation of the paddle and
using the matching conditions gives an equation allowing to determine w
with :

D(w; o, I, 1, @, H) =0

Solutions w = wy + i w; found numerically.

Physically : destabilization of a seiche mode maintained by the matching
of time scales.



A shallow water model Linear stability analysis

Approximation small flow rate : Q < 1 or ag > 1

In the hypothesis where the flow rate small ie g > 1, F() ~ ay
by keeping the leading order terms in ag in D(w) = 0, it gives

Q=~nm

ie in dimensional variables :

VegHL

W =nNn—

X

By looking at Q = nmw 4 7, we have the growth rate

. 2 2
i(1— fagﬂé)

3.2
%OZO\/E(—]- + i + iZzaol)

4/3

and

(13)



A shallow water model Linear stability analysis

Numerical application :

Madded=3.1g
x=bcm
X=18cm
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Experiments

Experiments

Experimental setup

Mass for counterbalance




SCEINEVE  Results

Steady state
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Experiments

Instability of the seiche
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Water height : comparison between linear theory and the experiment :

) ~ 20 -
W = e IWt=S8x) 2= co5(Qix) for n =1
w

©  Actual Interface
Linear theory

Experiment with m,qgeq=3.1g at 5 cm of the pivot.



Experiments

Mode 2 dominant ?



Variation of parameters
Variation of maggeq at q fixed. (g = 1.42 x 107*m3/s)
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(SLEMEOVEN  Limits of the model

Limits of the model

@ Collision with the bottom.

Side effects : flow around the paddle
Friction in the hinge.

Viscosity or surface tension not included.

Validity of the shallow water hypothesis.
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Evidence of non-linearities

Non-linear interaction of modes «==
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Experiments

Evidence of non-linearities
Bistabilité




Experiments

Subcritical bifurcation ?
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Conclusion

Conclusion

To remember
v/ Highlight of the instability.

v/ Agreement between theory and observation of seiche modes

To be done
v Non-linear theory
v Role of side effects






Seiches in a box : standing waves.
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