Destabilizing a seiche with an movable dam.

Hélène Scolan

Supervisor : Neil BALMFORTH, University of British Columbia , Vancouver, Canada

August 2009

GFD Program

Introduction

A shallow water model

- Governing equations
- Scaling and non dimensional parameters
- Approximation R small
- Linear stability analysis

3 Experiments

- Experimental setup
- Results
- Limits of the model

4 Conclusion

Volcanic tremors and clarinet

Oscillating reed or rock excitating and interacting with standing waves in the adjacent reservoir.

Seiches in a box : standing waves.

Key: ----- = shape of surface ----- = water surface one-half period later N=node A = antinode

$$T = \frac{2L}{n\sqrt{gh}}$$

'Water' Clarinet : movable dam

A shallow water model

Governing equations

Conservation of angular momentum :

$$J\ddot{\phi} = -mgd\cos(\phi) + Wd\cos(\phi)\cos\theta \int_{L}^{X_{N}} pdx$$
(1)
$$J = (M+m)d^{2}$$

M : effective mass and mass m excess equivalent mass placed on the paddle : $m_{added}x^2 = md^2$

A shallow water model

Governing equations

 ϕ small angle $\cos(\phi)pprox 1$ and $\dot{Z}pprox d\dot{\phi}$

$$(M+m)\ddot{Z}=-mg+W\cos\theta\int_{L}^{X_{N}}pdx$$

Governing equations

Equations for
$$0 < x < L$$
 :

$$h_t + (hu)_x = 0$$
$$u_t + uu_x = -gh_x$$

Boundary conditions : $[hu]_{x=0} = q$ $h(x = L) = h_L = Z + (X - L) \tan \theta$ Boundary conditions $u(x \to L^-) = u_L$

Equations for
$$x > L$$
:
 $h = Z(t) + (X - x) \tan \theta$
 $h_t = \dot{Z} = -(hu)_x$
 $u_t + uu_x = -\frac{p_x}{\rho}$

Boundary conditions : $u(x \rightarrow L^{-}) = u_L$ $h(x \rightarrow L^{-}) = h_L = Z + (X - L) \tan \theta$

Scaling and non dimensional parameters

Scaling of distances

• Reservoir :
$$\hat{x} = \frac{x}{X}$$

• Paddle : $x = (X_N - X)\xi + X$ with $l < \xi < 1$ ie
 $\hat{x} = R\xi + 1$ where $R = \frac{X_N - X}{X}$

Scaling and non dimensional parameters

$$\hat{h} = \frac{h}{(X_N - X)\tan\theta} \qquad \hat{u} = \frac{u}{\sqrt{g(X_N - X)\tan\theta}}$$
$$\hat{t} = \frac{t}{\frac{X}{\sqrt{g(X_N - X)\tan\theta}}} \qquad \hat{p} = \frac{p}{\rho g(X_N - X)\tan\theta}$$

Equations for
$$0 < x < L$$
 :

q=hu
$$\hat{h}_{\hat{t}} + \hat{q}_{\hat{x}} = 0$$

 $\hat{q}_{\hat{t}} + (\frac{\hat{q}^2}{\hat{h}})_{\hat{x}} = -\hat{h}\hat{h}_{\hat{x}}$

Boundary conditions : $[\hat{h}\hat{u}]_{\hat{x}=0} = \hat{q}$ $\hat{h}_{\hat{l}} = h(\hat{x} = 1 + Rl)$ Equations for x > L: $\hat{h} = \hat{Z} - \xi$ $\hat{h}_t = \dot{Z} = -(\hat{h}\hat{u})_{\hat{x}}$ $\hat{p}_{\xi} = -\hat{u}\hat{u}_{\xi} - R\hat{u}_{\hat{t}}$

Boundary conditions : $\hat{u}_{\hat{L}} = u(\hat{x} = 1 + RI)$ $\hat{h}_{\hat{L}} = h(\hat{x} = 1 + RI)$ $\hat{u} = \frac{\hat{q}_{L}}{\hat{Z} - \xi} - R \frac{\xi - I}{\hat{Z} - \xi}$ The equation for the paddle becomes :

$$ec{Z}=-1+\mu\int_{ec{I}}^{1} extsf{p} extsf{d}\xi$$

The system has 5 parameters :

•
$$I = \frac{m+M}{m}R^2 \tan^2 \theta$$
 the inertia term,
• $\mu = \frac{\rho W(X_N - X)^2 \sin \theta}{m}$ the ratio mass water/mass on paddle
• $R = \frac{X_N - X}{X}$
• $\hat{Q} = \frac{q}{\sqrt{g}((X_N - X) \tan \theta)^{3/2}}$ the flow rate

Approximation R small

Equations for x > L:

$$\hat{u} = \frac{\hat{q}_L}{\hat{Z} - \xi} - R \frac{\xi - I}{\hat{Z} - \xi}$$
$$\hat{p}_{\xi} = -\hat{u}\hat{u}_{\xi} - R\hat{u}_{\hat{t}}$$
$$I\ddot{Z} = -1 + \mu \int_I^1 pd\xi$$

Approximation R small : $u \approx \frac{q_L}{Z-\xi} = \frac{q_L}{h}$ and $p_\xi \approx -u u_\xi$

ie Bernoulli is verified under the paddle.

$$p + 1/2u^2 = B = \text{constant} = h_N + 1/2u_N^2 = h_L + 1/2u_L^2$$

Compact form using the ratio of heights $\alpha = \frac{h_L}{h_N}$:

$$\frac{q_L^2}{2h_N^3} = \frac{Fr_N^2}{2} = \frac{\alpha^2}{\alpha+1} > 1$$

By integrating to get the pressure force, the equation of motion for the paddle becomes :

$$\ddot{Z} = -1 + \frac{q_L^{4/3}\mu}{2^{2/3}}F(\alpha)$$

where

$$F(\alpha) = \frac{(\alpha - 1)(\alpha^2 + 1)}{\alpha^{4/3}(\alpha + 1)^{1/3}}$$

Then the steady state (Q_L, H_L, H_N) is :

$$F(\alpha_0) = \frac{2^{2/3}}{Q_L^{4/3}\mu}$$
(3)

(2)

Linear stability analysis

$$h_t + q_x = 0 \tag{4}$$

$$q_t + (\frac{q^2}{h})_x = -hh_x \tag{5}$$

Linearization :

$$h = H + h' \quad h_L = H_L + h'_L \text{ and } h_N = H_N + Z'$$
$$q = Q + q'$$
$$Z = Z_0 + Z'$$

where $H(=H_L)$ and $Q(=Q_L)$ are the stationary state.

q

$$h'_{t} + q'_{x} = 0$$

$$(6)$$

$$(7)$$

$$(7)$$

(8)

$$h'_{t} + q'_{x} = 0$$
(9)
$$q'_{t} + \frac{2Q}{H}q'_{x} - \frac{Q^{2}}{H}h'_{x} = -Hh'_{x}$$
(10)

which can be combined to give :

$$\left(\partial_t + \frac{Q}{H}\partial_x\right)^2 h' = Hh'_{xx}$$

We seek for $q' = \tilde{q} e^{-i\omega t}$ and $h' = \tilde{h} e^{-i\omega t}$ which gives :

$$\left(-i\omega+\frac{Q}{H}\partial_{x}\right)^{2}\tilde{h}=H\tilde{h}_{xx}$$

We seek solution of the from $e^{\lambda x}$.

$$(-i\omega + \frac{Q}{H}\lambda)^2 - H\lambda^2 = 0$$

$$\lambda_1 = \frac{i\omega}{\frac{Q}{H} - \sqrt{H}} \text{ and } \lambda_2 = \frac{i\omega}{\frac{Q}{H} + \sqrt{H}}$$

Thus $\tilde{q} = A_1 e^{\lambda_1 x} + A_2 e^{\lambda_2 x}$ and $\tilde{h} = A_3 e^{\lambda_1 x} + A_4 e^{\lambda_2 x}$

 A_1 can be chosen arbitrary to 1.

Т

Boundary conditions q'=0 at x=0 so $A_2 = -1$.

Then $i\omega \tilde{h} = \tilde{q}_{\chi}$ gives $A_3 = \frac{1}{\frac{Q}{H} + \sqrt{H}}$ and $A_4 = -\frac{1}{\frac{Q}{H} - \sqrt{H}}$ Variables $\beta = \frac{Q}{H^{3/2}}$ and $\tilde{\Omega} = \frac{\Omega}{(1-\beta^2)}$ where $\Omega = \frac{\omega}{\sqrt{H}}$, q'and h' are written :

$$q' = e^{-i\tilde{\Omega}\beta x} 2i\sin(\tilde{\Omega}x)e^{-i\omega t}$$
$$h' = e^{-i\tilde{\Omega}\beta x}\frac{2\tilde{\Omega}}{\omega}\left[\cos(\tilde{\Omega}x) - \beta i\sin(\tilde{\Omega}x)\right]e^{-i\omega t}$$

Paddle and Bernoulli linearized equations :

$$-\omega^{2} I Z' = \frac{4}{3} \frac{\mu}{2^{2/3}} Q^{1/3} q'_{L} F(\alpha_{0}) + \frac{\mu}{H_{N}} \frac{F'(\alpha_{0})}{F(\alpha_{0})} (h'_{L} - \alpha_{0} Z')$$
(11)
$$Q q'_{L} - h'_{L} H^{2}_{N} \frac{\alpha_{0}(\alpha_{0} + 2)}{(\alpha_{0} + 1)^{2}} = \frac{H^{2}_{N} \alpha^{2}_{0} Z'(2\alpha_{0} + 1)}{(\alpha_{0} + 1)^{2}}$$
(12)

where $F'(\alpha_0) = \frac{dF}{d\alpha}(\alpha_0)$

Matching conditions :

$$q'_L = q'(x=1+R \; {\it l}(t),t) pprox q'(x=1,t)$$
 and also $h'_L pprox h'(x=1)$

The Bernoulli equation combined with the equation of the paddle and using the matching conditions gives an equation allowing to determine ω with :

$$D(\omega; lpha_0, I, \mu, Q, H) = 0$$

Solutions $\omega = \omega_r + i \omega_i$ found numerically.

Physically : destabilization of a seiche mode maintained by the matching of time scales.

Approximation small flow rate : $Q \ll 1$ or $\alpha_0 \gg 1$

In the hypothesis where the flow rate small ie $\alpha_0 \gg 1$, $F(\alpha_0) \sim \alpha_0^{4/3}$ and by keeping the leading order terms in α_0 in $D(\omega) = 0$, it gives

$$\Omega \approx n\pi$$

ie in dimensional variables :

$$\omega = n\pi \frac{\sqrt{gH_L}}{X}$$

By looking at $\Omega = n\pi + \gamma$, we have the growth rate

$$\gamma = \frac{i(1 - \frac{n^2 \pi^2 I}{4 \alpha_0 \mu^2})}{\frac{1}{3} \alpha_0 \sqrt{2} (-1 + \frac{1}{\mu} + \frac{3n^2 \pi^2 I}{4 \mu^2 \alpha_0})}$$

(13)

Experiments

Experimental setup

Steady state

Comparison between experimental points (dots) and numerical calculation which inverses $F(\alpha_0) = \frac{2^{2/3}}{Q_L^{4/3}\mu}$ (squares). $\theta = 30^{\circ} \text{ q}=1.6e - 4 \text{ } m^3/s$

Instability of the seiche

Time series for m_{added} =3.1g at 5cm of the pivot

Water height : comparison between linear theory and the experiment :

$$h' = e^{-i(\omega t - ilde{\Omega}eta x)} \; rac{2 ilde{\Omega}}{\omega} cos(ilde{\Omega} x) \quad ext{for } n = 1$$

Experiment with m_{added} =3.1g at 5 cm of the pivot.

|--|

Mode 2 dominant?

Variation of parameters

Variation of m_{added} at q fixed. $(q = 1.42 \times 10^{-4} m^3/s)$

Variation of q at m_{added} fixed. (m_{added} =8.9 g and x=25 cm)

Limits of the model

• Collision with the bottom.

- Side effects : flow around the paddle
- Friction in the hinge.
- Viscosity or surface tension not included.
- Validity of the shallow water hypothesis.

Evidence of non-linearities

Non-linear interaction of modes 🟁

Time series for m_{added} =3.1g at 30cm of the pivot

Evidence of non-linearities Bistabilité

Subcritical bifurcation?

Conclusion

To remember

- $\checkmark\,$ Highlight of the instability.
- \checkmark Agreement between theory and observation of seiche modes

To be done

- \checkmark Non-linear theory
- $\checkmark\,$ Role of side effects

Conclusion

Seiches in a box : standing waves.

Key: ----- = shape of surface ----- = water surface one-half period later N=node A = antinode

$$T = \frac{2L}{n\sqrt{gh}}$$