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ABSTRACT

In both Boussinesq and non-Boussinesq cases the Green’s function of internal gravity

waves is calculated, exactly for monochromatic waves and asymptotically for impulsive

waves. From its differentiation the pressure and velocity fields generated by a point source

are deduced. By the same method the Boussinesq monochromatic and impulsive waves

radiated by a pulsating sphere are investigated.

Boussinesq monochromatic waves of frequency ω < N are confined between

characteristic cones θ = arc cos (ω/N) tangent to the source region (N being the buoyancy

frequency and θ the observation angle from the vertical). In that zone the point source model

is inadequate. For the sphere an explicit form is given for the waves, which describes their

conical 1/√r radial decay and their transverse phase variations.

Impulsive waves comprise gravity and buoyancy waves, whose separation process

is non-Boussinesq and follows the arrival of an Airy wave. As time t elapses, inside the torus

of vertical axis and horizontal radius 2Nt/β for gravity waves and inside the circumscribing

cylinder for buoyancy waves, both components become Boussinesq and have wavelengths

negligible compared with the scale heigth 2/β of the stratification. Then, gravity waves are

plane propagating waves of frequency N cos θ, and buoyancy waves are radial oscillations of

the fluid at frequency N; for the latter, initially propagating waves comparable with gravity

waves, the horizontal phase variations have vanished and the amplitude has become

insignificant as the Boussinesq zone has been entered. In this zone, outside the torus of

vertical axis and horizontal radius Nta, a sphere of radius a « 2/β is compact compared with the

wavelength of the dominant gravity waves. Inside the torus gravity waves vanish b y

destructive interference. For the remaining buoyancy oscillations the sphere is compact

outside the vertical cylinder circumscribing it, whereas the fluid is quiescent inside this cylinder.
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1. INTRODUCTION

Internal gravity waves in density stratified fluids, and the similar inertial waves in rotating

fluids, markedly differ from the more classical acoustic or electromagnetic waves. They are

anisotropic, and dispersive. In the monochromatic régime hyperbolic differential equations,

rather than elliptic equations, govern their propagation. As a consequence even the classical

Fermat’s principle does not hold for them (Barcilon & Bleistein 1969).

The group velocity theory (e.g. Lighthill 1978 § 4.4, Tolstoy 1973 § 2.4) proved to

be an ideal means of studying the changes such unusual properties induce on wave

propagation. Thus, the knowledge of such phenomena as scattering (Barcilon & Bleistein

1969, Baines 1971) and guiding (Brekhovskikh & Goncharov 1985 § 10.5) of internal or

inertial waves has now reached a degree of refinement comparable with that for classical

waves. Internal or inertial wave generation remains, on the other hand, less known. Lighthill

(1960, 1965, 1967) has developed in Fourier space and time a theory for the generation of

anisotropic dispersive waves, which is especially successful in dealing with internal waves

(Lighthill 1978 § 4.8-4.12). Its crux is, again, group velocity. As any Fourier transform-based

approach, Lighthill’s theory primarily applies to initial perturbations, and oscillating or uniformly

moving sources.

In this paper we initiate the development of an alternative theory of internal wave

generation, which we intend complementary to his in that the waves are investigated in real

space and time. Greater attention can, accordingly, be paid to sources with arbitrary time

dependence; such are arbitrarily moving sources, which will be considered in a forthcoming

paper. Our approach is based upon the Green’s function method (Morse & Feshbach 1953

ch. 7): the internal wave field is built as a superposition of elementary impulses, each of which

is represented by the Green’s function. Although the theories of acoustic (cf. Pierce 1981) and

electromagnetic (cf. Jackson 1975) wave radiation largely rely upon Green’s functions, no

attempt has been made before to develop a similar theory of internal wave radiation, except

in some recent Soviet works where it has been sketched (Miropol’skii 1978, Sekerzh-

Zen’kovich 1982), or introduced to solve particular problems (Gorodtsov & Teodorovich

1980, 1983).

As a preliminary step toward this aim, the present paper is devoted to the Green’s

function itself. The fluid is assumed unbounded and nonrotating, the buoyancy frequency

constant and the internal waves three-dimensional. First a synthesis and a completion of

previous scattered and sometimes contradictory results about the Green’s function are given.
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From them criteria are secondly deduced for the validity of two approximations of crucial

importance in internal wave theory: the point source model and the Boussinesq

approximation. To achieve this aim the internal wave field of a point source is deduced from

the Green’s function, and it is compared with that of a pulsating sphere.

In § 2 we review the existing literature about the Green’s function of internal waves.

Then we derive in § 3 their equation, and discuss the radiation condition for them. The

properties of plane internal waves are recalled in § 4 and applied to monochromatic and

impulsive point sources, for the interpretation of results to follow. Section 5 describes the

exact calculation of the monochromatic and impulsive Green’s functions. An asymptotic

evaluation of the latter, only obtained in § 5 in integral form, exhibits in § 6 the splitting of

Boussinesq internal waves into gravity waves and buoyancy oscillations. The mechanism of

the splitting is seen to be non-Boussinesq, and criteria are given for the validity of the

Boussinesq approximation for each component. The analysis of gravity waves and

buoyancy oscillations is continued in § 7, by deducing from the Green’s function the pressure

and velocity fields radiated by a point mass source. In § 8 a similar calculation of the

Boussinesq internal waves generated by a pulsating sphere is made. Simultaneously the

validity of equivalent point sources is examined, for either monochromatic or impulsive

pulsations.
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2. BIBLIOGRAPHICAL REVIEW

Investigations of the Green’s function of monochromatic internal waves generally

involve Fourier transform methods. In this way Sarma & Naidu (1972 a, b), omitting the use of

any radiation condition, then Ramachandra Rao (1973, 1975) and Tolstoy (1973 § 7.3),

restoring it, derived non-Boussinesq internal waves generated by point mass and force

sources. A similar calculation of the Boussinesq Green’s function has been achieved by Rehm

& Radt (1975), and partially performed by Miles (1971), Sturova (1980) and Gorodtsov &

Teodorovich (1980, 1983) during studies of internal wave radiation by moving point sources.

Unfortunately these results are often contradictory, like Ramachandra Rao’s (1973, 1975)

ones, which do not even coincide with each other.

A different angle of attack has more recently been adopted by some Soviet workers,

who directly considered the Green’s function of Boussinesq impulsive internal waves without

resorting to any monochromatic intermediate step. Teodorovich & Gorodtsov (1980) proved

Miropol’skii’s (1978) study by classical function theory to lead to erroneous conclusions, and

Sekerzh-Zen’kovich’s (1979) approach by generalized function theory to be the only valid

one. The latter writer proposed both exact and asymptotic results. Zavol’skii & Zaitsev (1984)

then investigated the physical meaning, and applicability, of the asymptotic one. In so doing

they but recovered an analysis by Dickinson (1969) who, as a particular case of acoustic-

gravity waves, i.e. internal waves coupled with acoustic waves by compressibility, had

performed a thorough asymptotic analysis of the Green’s function of Boussinesq impulsive

internal waves.

In a more general fashion a third series of studies have been devoted to the Green’s

function of acoustic-gravity waves and become, once the incompressible limit has been

applied to them, relevant to non-Boussinesq internal waves. Pierce (1963), by a shrewd

formulation of the radiation condition, Moore & Spiegel (1964), by Lighthill’s (1960)

asymptotic method, and Grigor’ev & Dokuchaev (1970), by the use of Fourier transforms,

independently obtained three coinciding expressions of the monochromatic Green’s function.

Kato (1966 a) made a more detailed examination of the equivalence of the first two

derivations. He later (Kato 1966 b) deduced from the group velocity theory, and Cole &

Greifinger (1969) from a stationary phase analysis, the wavefront structure of the impulsive

Green’s function. Then, Dickinson (1969) and Liu & Yeh (1971) derived the asymptotic

expansion of the associated waves while Row (1967) described a hydrostatic, that is low

frequency, approximation for them.
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Experiments about the generation of internal waves have involved bodies of finite

dimensions, and various shapes and motions. Monochromatic oscillations of a cylinder

(Mowbray & Rarity 1967, Kamachi & Honji 1988) or a sphere (McLaren et al. 1973),

impulsive oscillations of a cylinder (Stevenson 1973) and free motion of a displaced solid

(Larsen 1969) or fluid (McLaren et al. 1973) sphere have all been investigated.

Few theoretical studies consider the generation of internal waves by sources of finite

size from a general point of view. All of them are asymptotic and rely on far field or large time

hypotheses. Under the Boussinesq approximation this problem has been solved by Lighthill

(1978 § 4.10) and Chashechkin & Makarov (1984) for extended monochromatic and transient

mass sources, respectively, and Lighthill (1978 § 4.8) and Sekerzh-Zen’kovich (1982) for

initial perturbations of the stratified medium. 

Most theoretical works deal with the motion of rigid bodies of specified shape.

Bretherton (1967) and Grimshaw (1969) investigated the generation of Boussinesq internal

waves by the impulsively started uniform motion of respectively a cylinder and a sphere.

Hendershott (1969) similarly considered the impulsively started monochromatic pulsations of

a sphere, and Larsen (1969) its free oscillations; Larsen nevertheless focused his attention on

the oscillations themselves rather than the waves they produce. All subsequent works have

been devoted to steady monochromatic internal waves, radiated by a cylinder (Appleby &

Crighton 1986), a sphere (Appleby & Crighton 1987), a spheroid, either considered

explicitly (Sarma & Krishna 1972) or under the slender-body approximation (Krishna & Sarma

1969), and a slender body of arbitrary axisymmetric shape (Rehm & Radt 1975). Of the

monochromatic studies only the latter two assume Boussinesq internal waves.
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3. STATEMENT OF THE PROBLEM

3.1. Internal wave equation

In an unbounded incompressible fluid with uniform stratification, that is where the

undisturbed density ρ0 varies exponentially with height z according to

ρ0(z) = ρ00 e–βz  , (3.1)

the buoyancy (or Brunt-Väisälä) frequency N = (gβ)1 / 2  is constant. The small amplitude

internal waves generated by a mass source of strength m per unit volume are described b y

the linearized equations of fluid dynamics (Brekhovskikh & Goncharov 1985 § 10.1, Lighthill

1978 § 4.1):

ρ0 
∂v

∂t
 = – ∇∇∇∇P – ρgez  , (3.2)

∇∇∇∇.v  = m  ,               (3.3)

∂ρ
∂t

 = ρ0βvz  .      (3.4)

Here v, P and ρ are respectively the velocity, pressure and density perturbations, and ez a

unit vector along the z-axis directed vertically upwards. Subscripts h and z will hereafter

denote horizontal and vertical components of vectors and operators.

Inferring from (3.2) that the motion is irrotational in the horizontal plane, we express vh

and P in terms of a horizontal velocity potential φ (Miles 1971), eliminate ρ by (3.4)and remark

that the resulting system of equations for vz and φ is satisfied if

v  = 
∂2

∂t2
 ∇∇∇∇ – βez  + N2 ∇∇∇∇h  ψ  , (3.5)

P = – ρ0 
∂2

∂t2
 + N2  

∂

∂t
 ψ  ,         (3.6)

ρ = ρ0β 
∂

∂z
 – β  

∂

∂t
 ψ  ,              (3.7)

with

∂2

∂t2
 ∆ – β 

∂

∂z
 + N2 ∆h  ψ = m  . (3.8)
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∆ = ∇∇∇∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 and ∆h = ∇∇∇∇h
2 = ∂2/∂x2 + ∂2/∂y2 are respectively the three-

and two-dimensional Laplacians. The “internal potential” ψ generalizes to uniformly stratified

fluids the velocity potential of homogeneous fluids, and simultaneously exhibits the creation of

vorticity by the stratification. Its introduction dates back to Gorodtsov & Teodorovich (1980) for

Boussinesq internal waves, and Hart (1981) in a more general context.

The Boussinesq approximation consists of neglecting the inertial effects of density

variations compared with the buoyancy forces they create. It is equivalent to setting

β → 0    and    g → ∞    with    gβ = N2    held  fixed

in the preceding equations. Lighthill (1978 § 4.2) pointed out that, when non-Boussinesq

effects are taken into account, the compressibility of the fluid should be also, transforming

internal waves into acoustic-gravity waves. Studies of the generation of these waves (e.g. Liu

& Yeh 1971) showed them, however, to be made of the superposition of low frequency

nearly incompressible gravity waves and high frequency acoustic waves slightly affected b y

gravity, constituting two distinct wavefronts with different propagation velocities. Therefore,

non-Boussinesq incompressible internal waves have an existence of their own. As acoustic-

gravity waves are approached, whose characteristics are the buoyancy frequency N, the

sound velocity c and the acoustic cutoff frequency ωa, incompressibility means the limiting

process (cf. Tolstoy 1973 § 2.2)

c → ∞    and    ωa → ∞    with    ωa/c → β/2    and    N    held  fixed.

Removing from v, P, ρ and ψ density factors ensuring vertical conservation of energy,

according to

(ψ, v) = e+βz/ 2 (ψ', v ')        and        (P, ρ) = e–βz/ 2 (P', ρ')  , (3.9)

simplifies the internal wave equation (3.8) into

∂2

∂t2
 ∆ – 

β2

4
 + N2 ∆h  ψ' = e–βz/ 2 m  , (3.10)

with now

v ' = 
∂2

∂t2
 ∇∇∇∇ – 

β
2

 ez  + N2 ∇∇∇∇h  ψ'  , (3.11)
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P' = – ρ00 
∂2

∂t2
 + N2  

∂

∂t
 ψ'  ,         (3.12)

ρ' = ρ00β 
∂

∂z
 – 

β
2

 
∂

∂t
 ψ'  .            (3.13)

Hereafter v ’ , P’, ρ’ and ψ’ will implicitly be considered and primes will be omitted. While the

extraction of density factors reduces non-Boussinesq effects upon the propagation of internal

waves to O(β2) (Lighthill 1978 § 4.2), there remain O(β) effects upon their generation

(Appleby & Crighton 1986, 1987). This is exhibited by the non-Boussinesq term in the left-

hand side of (3.10), and the source term in its right-hand side.

3.2. Green’s function and radiation condition

From the mathematical point of view, the Green’s function G(r, t) of internal waves is

defined as the Green’s function of their operator, by

∂2

∂t2
 ∆ – 

β2

4
 + N2 ∆h  G(r, t) = δ(r) δ(t)  . (3.14)

It physically represents the internal potential generated by an impulsive point mass source

releasing a unit volume of fluid, from which the corresponding velocity, pressure and density

fields are deduced by (3.11)-(3.13). Accordingly, we shall refer to it as an impulsive Green’s

function and also introduce a monochromatic Green’s function G(r, ω), as the internal potential

generated by a monochromatic point source, so that

ω2 – N2  ∆h + ω2 
∂2

∂z2
 – 

β2

4
 G(r, ω) = – δ(r)  . (3.15)

They are related to each other by Fourier transformation in time, according to

G(r, ω) = G(r, t) e–i ω t dt ≡ FT G(r, t)   , (3.16a)

G(r, t) = 1
2π

 G(r, ω) eiω t dω ≡ FT–1 G(r, ω)   . (3.16b)

In actual fact, neither (3.14)nor (3.15)enable the complete determination of the Green’s

function, in that their solutions contain arbitrary linear combinations of free waves
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(corresponding to zero source terms). Similarly the presence, in inversion formula (3.16b), of

singularities of the integrand over the real axis makes the evaluation of the integral ambiguous.

In both cases a radiation condition must be added, which states that all waves originate at the

source, none “coming in from infinity” or having been generated before the source has begun

to emit. So far, three different forms of this condition have been used to deal with internal wave

generation: (i) Sommerfeld’s radiation condition, (ii) Lighthill’s radiation condition and (iii) Pierce’s

and Hurley’s radiation condition. 

Sommerfeld’s radiation condition operates in the space domain, and expresses that all

waves must be outgoing far from the source region. Its analytical form remains, for waves with

fixed propagation velocity, simple (cf. Pierce 1981 § 4.5). For internal waves it must,

however, be replaced by the requirement that the group velocity point outward, a

requirement which is differently written for each plane wave composing their spectrum. Under

the geometrical approximation waves are locally plane and this condition takes on a simple

form again (Barcilon & Bleistein 1969). When diffraction effects take place the whole spectrum

must be taken into account and the radiation condition must be written, either individually for

each plane wave to be later superposed (Ramachandra Rao 1973), or simultaneously for all

plane waves in which case unwieldy integral equations are involved (Baines 1971).

The radiation condition is more conveniently expressed for internal waves in the time

domain as the principle of causality: no waves can be radiated before the source has been

“switched on”. Lighthill, Pierce and Hurley proposed different ways to apply causality to

steady monochromatic waves. Lighthill (1960, 1965, 1967, 1978 § 4.9) adds to the

frequency ω a small negative imaginary part – ε which he later allows to tend to zero; he

interprets this process as a gradual exponential growth of the source from its switching-on at t

= – ∞ to its present state. Pierce (1963), and independently Hurley (1972), consider a source

abruptly switched on at t = 0; they require that time Fourier transforms such as G(r, ω) be

analytic in the lower half of the complex ω plane and tend to zero as Im ω → – ∞, so as to

ensure that G(r, t) is zero for negative times.

According to the causal radiation conditions the integration path in (3.16b) must lie

below the real singularities, what we write as

G(r, t) = 1
2π

        G(r, ω) ei ω t dω ≡ FT–1 G(r, ω)   . (3.17)

This definition is described by Morse & Feshbach (1953 pp. 460-461) as the natural
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extension of Fourier analysis to non square-integrable functions, whose Fourier transforms

only exist in a generalized function sense. It is not to be confused with the principal value of

integral (3.16b), which does not verify causality. It is on the other hand equivalent to the

Bromwich contour integral for Laplace transforms (cf. appendix D).
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4. PLANE INTERNAL W AVES

Numerous writers have investigated the properties of Boussinesq (e.g. Lighthill 1978

§ 4.1 and 4.4, Brekhovskikh & Goncharov 1985 § 10.4) and non-Boussinesq (e.g. Tolstoy

1973 § 2.4, Liu & Yeh 1971) plane internal waves and have analysed, via the group velocity

theory, the generation of internal waves by point sources. We summarize here their

conclusions, for the interpretation of forthcoming results.

4.1. Boussinesq case

The dispersion relation for plane monochromatic Boussinesq internal waves (k is the

wavevector, kh its horizontal projection, and k and kh their moduli),

ω = N kh
k

  , (4.1)

implies a frequency ω < N, an arbitrary wavelength λ and an inclination θ0 = arc cos (ω/N) of the

planes of constant phase to the vertical. The phase velocity cφ with which these planes move

and the group velocity cg with which energy propagates are perpendicular, according to

       cφ = ω
k

 k
k

      with      cφ = ω
k

 = N
k

 kh
k

 = N
k

 cos θ0  , (4.2)

cg = N
k

 kz
kh

 k
k

 × k
k

 × ez       with      cg = 
N2 – ω2

k
 = N

k
 
kz

k
 = N

k
 sin θ0  . (4.3)

Thus, energy propagates along the planes of constant phase. Conversely k satisfies

k = Ncg
 
cg
cg

 × 
cg
cg

 × ez  sgn cgz . (4.4)

By virtue of

v  = P
ρ0cg

 
cg
cg

  , (4.5)

fluid particles move along straight-line paths also parallel to the wavecrests.

A monochromatic point source consequently radiates Boussinesq internal waves along

directions inclined at the angle θ0 = arc cos (ω/N) to the vertical, on a “St Andrew’s Cross” in

two dimensions and a cone with vertical axis, hereafter called characteristic, in three dimensions

(figure 1). Surfaces of constant phase are parallel to this cone. They move toward the level of
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the source, but disappear as soon as they have left the cone within which all the energy is

confined. The motion of fluid particles is radial and also located on the cone. A confirmation of

these features comes from the experiments of Mowbray & Rarity (1967), McLaren et al.

(1973) and Kamachi & Honji (1988). Of particular importance are internal waves of near-

buoyancy frequency. They are confined at the vertical from the source and do not propagate,

for their group velocity vanishes. They instead are vertical oscillations of fluid particles. This too

is confirmed by the experiments of Gordon & Stevenson (1972).

The Boussinesq internal waves generated by a point impulsive source propagate

away from it at the group velocity cg = r/t , where r represents the position with respect to the

source and t the time elapsed since the impulse. The frequency and wavevector in a direction

inclined at an angle θ to the upward vertical follow from (4.4)and (4.1), as

ω = N cos θ      and     k = Nt
r  rr  × r

r × ez  sgn z  . (4.6)

The surfaces of constant phase Φ = ωt – k.r = Ntcos θ are conical (figure 2) and move

toward the level of the source at the decreasing phase speed

cφ = r
t
 cotan θ   , (4.7)

in agreement with experiments by Stevenson (1973). The wavelength

λ = 2π
k

 = 2π
Nt

 r
sin θ

(4.8)

is constant on toroidal surfaces with vertical axes and radii Ntλ/2π. It decays with time, as the

wavecrests multiply. Again, the motion of fluid particles is radial.

4.2. Non-Boussinesq case

Non-Boussinesq effects transform the dispersion relation into

ω = N kh

k2 + β2
/4

  . (4.9)

The wavenumber surface is no more a cone but an hyperboloidal surface of revolution, with

asymptotes making the angle π/2 – θ0 with the vertical (figure 3). The group velocity points

along its normal and is given by
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cg = N k2

k2 + β2
/4

3/2
 kz
kh

 k
k

 × k
k
 × ez  + N 

β2
/4

k2 + β2
/4

3/2
 kh
kh

  , (4.10)

or equivalently

cgh = 
N2 – ω2

ω
 kh

k2 + β2
/4

     and     cgz = – ω kz

k2 + β2
/4

  . (4.11)

It is no more perpendicular to the wavevector. The trajectories of fluid particles become

ellipses, studied by McLaren et al. (1973).

A point monochromatic source consequently radiates non-Boussinesq internal waves

into the whole region cos θ < ω/N situated out of the characteristic cone. There, each point

receives a wave whose group velocity is directed toward it and wavevector satisfies,

according to (4.11),

kh = 
β
2

 ω2

N2 – ω2  ω2 – N2 cos2θ
  sin θ  rh

rh
  , (4.12a)

kz = – 
β
2

 
N2 – ω2

ω2 – N2 cos2θ
 cos θ  .                (4.12b)

The associated phase is of the form

Φ = ωt – k.r = ωt – 
β r
2

 
ω2 – N2 cos2θ

N2 – ω2
 ≡ ωt – ξ(ω)r  . (4.13)

Waves are locally plane, with a radial wavenumber ξ(ω), a phase velocity ω/ξ(ω), and a group

velocity

cg = 1
ξ'( ω)

 = 2
β

 
N2 – ω2 3/2 ω2 – N2 cos2θ 1/2

N2 ω sin2θ
  , (4.14)

which vanishes at the limits Ncos θ and N of the internal wave spectrum and reaches a

maximum cg0 at the frequency (figure 4)

ω0 = N cos θ  
cos θ  + 3 – cos2θ

3
  . (4.15)
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5. EXACT GREEN’S FUNCTION

5.1. Monochromatic Green’s function

For ω > N, rescaling the coordinates according to

rh' = ω
N

 rh        and        z' = 
ω2 – N2 1/2

N
 z (5.1)

reduces equation (3.15) for the monochromatic Green’s function G(r, ω) to a Helmholtz-like

equation, whose Green’s function is given for instance by Bleistein (1984 p. 177).  Returning

to the original coordinate system described in figure 5 yields

G(r, ω) = 1
4π r

  e
– 

βr
2

 
ω2 – N2cos2θ

ω2 – N2

1/2

ω2 – N2 1/2 ω2 – N2cos2θ 1/2
  . (5.2)

As implied by the Pierce-Hurley radiation condition, the analytic continuation of this result over

the lower half of the complex ω plane provides the value of the Green’s function on the whole

real ω axis. The branch cuts emanating from the branch points ± N, ± Ncos θ are taken as

extending vertically upwards, as shown in figure 6. Thus, the phase of complex square roots

of the form (ω2 – ω0
2)1/2 has the following behaviour on the real axis:

ph  ω2 – ω0
2 1/2

 = 0            ω > ω0  , (5.3a)

                           = – π/2      ω  < ω0  , (5.3b)

                            = – π         ω < – ω0  . (5.3c)

Denoting from now on complex square roots, defined by (5.3), as powers 1/2 and real

square roots by a square root symbol, we obtain for the Green’s function at every real

frequency

G(r, ω) = 1
4π r

  e
– 

βr
2

 
ω2 – N2cos2θ

ω2 – N2

ω2 – N2  ω2 – N2cos2θ
                        ω  > N  ,                    (5.4a)

           = i 
sgn ω
4π r

  e
– i 

βr
2

 
ω2 – N2cos2θ

N2 – ω2
 sgn ω

N2 – ω2  ω2 – N2cos2θ
         N cos θ  < ω  < N  , (5.4b)
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    = – 1
4π r

  e
– 

βr
2

 
N2cos2θ – ω2

N2 – ω2

N2 – ω2  N2cos2θ – ω2
                     ω  < N cos θ   . (5.4c)

In accordance with the group velocity theory, internal waves propagate for frequencies Ncos

θ < ω < N and possess there the phase (4.13). Out of this frequency band they are

evanescent. Under the Boussinesq approximation their wavy character disappears, apart

from a phase jump of π/2 on the characteristic cone cos θ = ω/N where the Green’s function

diverges. Although this phenomenon is consistent with the confinement of Boussinesq internal

waves on the characteristic cone, it also shows the inadequacy of the Green’s function to

represent them there.

The preceding method has been introduced by Pierce (1963), later rederived b y

Hurley (1972) and recently developed by Appleby & Crighton (1986, 1987). “Classical”

investigations of the monochromatic Green’s function of internal waves involve, however, a

somewhat different Fourier analysis in the space domain. G(k, ω), defined by

G(r, t) = 1
2π 4

        dω d3k G(k, ω) e
i ωt – k.r

  , (5.5)

readily follows from (3.15)as

G(k, ω) = 1

ω2 k2 + β2
/4  – N2kh

2
  , (5.6)

but remains indeterminate for frequencies and wavenumbers related by the dispersion

relation (4.9). The radiation condition makes it determinate, by imposing that

G(k, ω) =    1

ω – iε 2 k2 + β2
/4  – N2kh

2
lim

ε → 0+
  ,                                   (5.7a)

                   = pv 1

ω2 k2 + β2
/4  – N2kh

2
 + iπ δ ω2 k2 + 

β2

4
 – N2kh

2  sgn ω  . (5.7b)

The principal value of the singular generalized function (5.6) is consequently added a

combination of free waves represented by the Dirac delta, so as to eliminate any wave which

does not originate at the source.

G(k, ω) is first inverted along one space direction by the joint use of the residue
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theorem and the radiation condition. The passage to (5.4) reduces then to the evaluation of

Sonine-Gegenbauer integrals, most of which are given by Watson (1966 § 13.47) and

others of which have been especially calculated for the purpose of this study. Further detail

about this procedure may be found in Voisin (1991). We just deal here with some

intermediate results, i.e. G(rh, kz, ω), G(kh, z, ω) and G(kx, y, z, ω), of special interest for some

problems of internal wave generation, such as moving point sources.

Pierce’s (1963) procedure enables their rapid derivation, in the following way: changes

of coordinates analogous to (5.1) reduce the equations which define them to the one- or two-

dimensional Helmholtz equations, whose Green’s functions have been given by Bleistein

(1984 p. 177). In the original coordinate system we obtain

G(rh, kz, ω) = 1
2π ω2 – N2

  K0 ω
ω2 – N2 1/2

 kz
2 + 

β2

4
 rh   , (5.8)

G(kh, z, ω) = e
– ω2 – N2

ω2
 kh

2 + 
β2

4

1/2

 z

2ω ω2 – N2  kh
2 + ω2β2

/4
1/2

  , (5.9)

G(kx, y, z, ω) = 1

2πω ω2 – N2 1/2
 K0 kx

2 + ω2

ω2 – N2
 
β2

4

1/2

 y2 + 
ω2 – N2

ω2
 z2

1/2

   .(5.10)

Most calculations of the monochromatic Green’s function found in the literature are

based upon the “classical” method, in both Boussinesq and non-Boussinesq cases.

Ramachandra Rao (1973, 1975), Grigor’ev & Dokuchaev (1970) and Gorodtsov &

Teodorovich (1983) derived G(rh, kz, ω) in this way. G(kh, z, ω) has been considered b y

Sarma & Naidu (1972 a, b), Ramachandra Rao (1973), Tolstoy (1973 § 7.3), Rehm & Radt

(1975), and also Miles (1971) and Sturova (1980). Gorodtsov & Teodorovich (1980)

eventually dealt with G(kx, y, z, ω). In actual fact, these investigations are often devoted to the

pressure and displacement fields generated by point mass and force sources rather than the

Green’s function defined in (3.15). These fields readily follow from the Green’s function, the

corresponding calculations being performed in appendix A. The systematic comparison

undertaken there shows published results to coincide with ours, except those of Sarma &

Naidu (1972 a, b), Tolstoy (1973 § 7.3) and Ramachandra Rao (1975).

The explanation for these discrepancies entirely lies in the radiation condition. Sarma &
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Naidu (1972 a, b) do not remove from pressure the exponential density factor (3.9) before

applying to it Fourier analysis. Thus, they consider the Fourier transform of a function which

does not possess any such transform, even as a generalized function. No radiation condition is

needed, but the pressure they obtain is physically unacceptable. Ramachandra Rao (1975)

restores the extraction of the density factor, but his application of Sommerfeld’s radiation

condition seems erroneous and accordingly the pressure he derives for a force source is not

consistent with his previous result for a mass source (Ramachandra Rao 1973). Similarly, the

difference between Tolstoy’s (1973 § 7.3) displacement and ours is caused by an invalid use

of Lighthill’s radiation condition, which Tolstoy understands as an attenuation of the radiated

waves with time.

5.2. Impulsive Green’s function

To calculate the impulsive Green’s function Sekerzh-Zen’kovich (1979) introduced a

direct procedure, based upon

G(k, t) = – 
H(t)

Nkh k2 + β2
/4

  sin Nt kh

k2 + β2
/4

  , (5.11)

which follows from the application of residue theorem to (5.6). H(t) denotes the Heaviside

step (H(t) = 1 for t > 0, 0 for t < 0). When the Boussinesq approximation is made, Fourier

inverting (5.11) in space yields an integral expression of the Green’s function, rewritten b y

Teodorovich & Gorodtsov (1980) as the spectral decomposition

GB(r, t) = – 
H(t)

2π2r
  sin ωt

N2 – ω2  ω2 – N2cos2θ
  dω

N cos θ

N

  . (5.12)

Hereafter a subscript B will denote a Boussinesq result. Thus, impulsive internal waves can

be expressed as the superposition of only propagating monochromatic waves.

Clearly, a procedure relating more explicitly the monochromatic Green’s function to the

impulsive one, and holding for non-Boussinesq as well as Boussinesq internal waves, is

needed. It begins by Fourier inverting (5.2) in time, so that (the integration contour is sketched

in figure 6 and lies below the singularities of the integrand)
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G(r, t)  = 1
8π2r

      e
iωt – 

βr
2

 
ω2 – N2cos2θ

ω2 – N2

1/2

ω2 – N2 1/2 ω2 – N2cos2θ 1/2
  dω

–∞

+∞

  . (5.13)

Then, separating by (5.4) the contributions of propagating and evanescent waves, we find

G(r, t) = 1
4π2r

    

sin 
βr
2

 
ω2 – N2cos2θ

N2 – ω2
 – ωt

N2 – ω2  ω2 – N2cos2θ
  dω

N cos θ

N

          + 1
4π2r

   – 
N

∞
    e

– 
βr
2

 
ω2 – N2cos2θ

ω2 – N2   cos ωt

ω2 – N2  ω2 – N2cos2θ
  dω

0

N cos θ

  . (5.14)

Closing for t < 0 the integration contour of (5.13) by an infinite semicircle in the lower

half-plane where G(r, ω) is analytic, and applying Jordan’s lemma, we recover the causality of

the Green’s function: G(r, t) = 0 for t < 0. Separating its odd and even parts with respect to

time, we have

G(r, t) = 2 H(t) Godd(r, t) = 2 H(t) Geven(r, t)  , (5.15)

and (5.14)accordingly becomes

G(r, t) = – 
H(t)

2π2r
     

cos 
βr
2

 
ω2 – N2cos2θ

N2 – ω2
 sin ωt

N2 – ω2  ω2 – N2cos2θ
  dω

N cos θ

N

  . (5.16)

Evanescent waves consequently merge with propagating waves and transform them into the

standing waves appearing in (5.16). Under the Boussinesq approximation, the relative

contributions of propagating and evanescent waves are even equal, but it must be reminded

that their propagating or evanescent character is lost in that case.
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Closing now for t > 0 the integration contour of (5.13)in the upper half-plane transforms

the Green’s function into the sum of four integrals along the branch cuts emanating from ± N, ±

Ncos θ (cf. figure 6). Impulsive internal waves are thus made of the combination of gravity

waves, that is plane propagating waves of frequency Ncos θ, and buoyancy oscillations,

which are oscillations of the fluid at frequency N (these names date back to Dickinson 1969).

Group velocity allowed in § 4.1 a first examination of the properties of both components.

Unfortunately neither these properties, nor the way that gravity waves and buoyancy

oscillations are combined to form the internal wave field, are exhibited by the spectral integral

(5.16). Thus alternative procedures, of either exact or asymptotic nature, must be developed

for the calculation of the impulsive Green’s function. This is performed in section 6.
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6. ASYMPTOTIC GREEN’S FUNCTION

6.1. Boussinesq Green’s function

Under the Boussinesq approximation, the monochromatic Green’s function

GB(r, ω) = 1
4π r

  1

ω2 – N2 1/2 ω2 – N2cos2θ 1/2
(6.1)

is made of the product of two functions whose inverse Fourier transforms are by (D6) Bessel

functions. Then convolution theorem implies that

GB(r, t) = – 
H(t)
4π r

  J0 Nτ cos θ  J0 N t – τ   dτ
0

t

  , (6.2)

a time decomposition of the impulsive Green’s function showing how gravity waves and

buoyancy oscillations interact to produce the overall internal wave pattern. At the vertical from

the source and at its level only the latter ones are encountered, according to

GB rh = 0 = – H(t) sin Nt
4πN z

  , (6.3)

∂GB

∂ t
 

z = 0

 = – H(t) 
J0 Nt
4π rh

  ,  (6.4)

which follow from the application of (D5) and (D6) to (6.1). Instead of being confined at the

vertical from the source buoyancy oscillations are consequently distributed over the whole of

space, in contradiction with the predictions of the group velocity theory.

To gain a better physical insight into the separation of internal waves into gravity

waves and buoyancy oscillations, we must resort to asymptotic procedures, deduced from

general theorems about Fourier transforms. The small-time expansion of GB(r, t) is obtained

by term-by-term inversion of the high-frequency expansion of GB(r, ω) (Morse & Feshbach

1953 p. 462). Similarly a large-time expansion of GB(r, t) is derived by adding up the

contributions of the singularities ± N, ± Ncos θ of GB(r, ω) (Lighthill 1958 § 4.3). Such an

analysis has first been applied to the Green’s function of internal waves by Dickinson (1969),

in the context of Laplace transforms.

For small times Nt « 1, expanding GB(r, ω) in an inverse power series of ω and

allowing for (D2), we obtain
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GB(r, t) ~ – 
H(t)

4πNr
  αn 

Nt 2n + 1

2n+1 !∑
n = 0

∞

  , (6.5)

where

αn = 
(–1)n

π
  Γ j+1/2 Γ k+1/2

j !      k!∑
j +k = n

 cos2k θ  . (6.6)

The series (6.5) converges for all finite t, so constituting an exact representation of the

impulsive Green’s function rather than a mere expansion. To leading order,

GB(r, t) ~ – H(t) t
4π r

  . (6.7)

In agreement with Batchelor’s (1967 § 6.10) general discussion, and Morgan’s (1953)

discussion of the analogous case of unstratified rotating fluids, the Boussinesq fluid initially

ignores its stratification. Thus its motion, described by (6.7), is irrotational. Further details about

the question of initial conditions for stratified or rotating fluids, which has been a controversial

subject for several years, are given in appendix B.

For large times Nt » 1, gravity waves and buoyancy oscillations have become

separated. They respectively correspond to the contributions of the pairs of branch points ±

Ncos θ and ± N. Gravity waves are, from the expansion of GB(r, ω) in powers of

(ω – Ncos θ)1/2 near Ncos θ and its Fourier inversion by (D3),

GBg(r, t) ~ – 
H(t)

2π 3/2Nr sin θ
  Re e

i Nt cos θ  – π/4

Nt cos θ
 in 

Γ n+1/2
π

 
βn

Nt cos θ n∑
n = 0

∞

  , (6.8)

with

βn = 
(–1)n

π3/2
 Γ j+1/2  Γ k+1/2 Γ m+1/2

j !      k!      m!∑
j +k +m = n

 
(–1)m cos θ k + m

2j  1+ cos θ k
 1– cos θ m

  . (6.9)

The conjugate contribution of – Ncos θ has been incorporated by taking two times the real

part of the result. We similarly have for buoyancy oscillations

GBb(r, t) ~ – 
H(t)

2π 3/2Nr sin θ
  Im ei Nt – π/4

Nt
 in 

Γ n+1/2
π

 
γn

Nt n∑
n = 0

∞

  , (6.10)

with

γn = (–1)n

π3/2
 Γ j+1/2  Γ k+1/2 Γ m+1/2

j !      k!      m!∑
j +k +m = n

 1

2j  1+ cos θ k
 1– cos θ m

  . (6.11)
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To better exhibit the angular dependence of the coefficients βn and γn it may be preferred to

express them in terms of generating functions, in which case

βn , γn  = 
(–1)j

j !
 
Γ j+1/2

π
 

fk , gk

2j∑
j +k = n

  , (6.12)

where

1 – 2 
µ

tan2θ
 – 

µ2

tan2θ

– 1/2

 = fk µk∑
k = 0

∞

  , (6.13)

1 + 2 
µ

sin2θ
 + 

µ2

sin2θ

– 1/2

 = gk µk∑
k = 0

∞

  . (6.14)

Of crucial importance is the leading-order term of the large-time expansion,

GB(r, t) ~ – 
H(t)

2π 3/2Nr sin θ
  

cos Nt cos θ  – π/4

Nt cos θ
 + 

sin Nt – π/4
Nt

  , (6.15)

which extends Lighthill’s (1978) equations (255)-(258) to the Green’s function of internal

waves, by simultaneously including gravity waves and buoyancy oscillations. Gravity waves

are verified to have the phase expected from the consideration of group velocity. Buoyancy

oscillations are confirmed not to propagate, but also to be present everywhere. For the

moment we just note these points, and postpone the full interpretation of (6.15) until § 7.2.

Another asymptotic expansion of the Green’s function, alternative to (6.15), may also be

derived; this is the matter of appendix C.

When the vertical line passing through the source (θ = 0 or π) or the horizontal plane

containing it (θ = π/2) are approached, (6.15) is invalidated. Near to the vertical, gravity waves

and buoyancy oscillations may no more be separated and combine into the persistent

oscillation accounted for by (6.3). Near to the horizontal, (6.4) shows gravity waves, whose

frequency tends toward zero, to vanish. There only remain buoyancy oscillations, still

described by the corresponding terms of (6.15). A more precise study of the range of validity

of large-time expansions of internal waves has been achieved by Zavol’skii & Zaitsev

(1984). Its consideration is, again, postponed until § 7.2.

6.2. Non-Boussinesq Green’s function

Non-Boussinesq effects induce in the phase of the impulsive Green’s function (5.13)

an additional dependence upon position r and frequency ω which significantly alters the way

that its asymptotic expansions are obtained. First, the calculation of a general form for all terms
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is excluded and we shall only consider leading-order terms.

For small times Nt « 1, the procedure of § 6.1 remains applicable and yields

G(r, t) ~ – H(t) e
– βr/2

4π r
 t  . (6.16)

Surprisingly, non-Boussinesq effects cause an isotropic exponential decrease of the

perturbation with distance from the source, to be added to the anisotropic exponential

variation (3.9). When r is small compared with the scale height 2/β of the stratification the

Boussinesq result (6.7) is recovered and the initial motion is irrotational again.

For large times Nt » 1, two distinct types of expansions must be separated,

depending on whether r is allowed to become large with t or not : (i) t → ∞ with r/t fixed, (ii) t

→ ∞ with r fixed. They correspond to different regions of space and time which, as Bretherton

(1967) pointed out in a similar case, “merge into one another, in those places where the

respective asymptotic expansions have common areas of validity”. Expansion (i) describes

a given wavepacket moving at the group velocity cg = r/t, so as to maintain its frequency and

wavenumber constant. At a given point expansion (i) is first valid, and the successive arrivals

of wavepackets of decreasing group velocity are observed; then, as cg → 0 and t/r → ∞,

expansion (ii) becomes relevant. Conversely at a given (but still large) time, region (ii) is

composed of points situated at finite distances from the source, while region (i) lies outside it.

For Nt » 1 and a fixed r/t, the impulsive Green’s function (5.13)may be evaluated by a

graphical procedure, developed by Felsen (1969) and applied by Liu & Yeh (1971) to

acoustic-gravity waves. This procedure is based upon the method of stationary phase (e.g.

Bleistein 1984 § 2.7). The phase

Φ(ω) = ωt + i 
βr
2

 
ω2 – N2 cos2θ

ω2 – N2

1/2

 ≡ ωt – ξ(ω)r (6.17)

of the integrand is stationary for the frequency ωs, with which is associated a wavepacket of

radial wavenumber ξ(ωs) and group velocity cg(ωs) verifying

Φ' ωs  = 0        or        tr = ξ' ωs  = 1
cg ωs

  . (6.18)

The dominant contributions to the integral are assumed to arise from the frequency band

Ncosθ < ω < N of propagating internal waves, of which the group velocity (4.14) has

already been plotted in figure 4 versus frequency. Intersecting in figure 7 a similar plot of the
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inverse group velocity with horizontal lines of heights t/r provides, according to (6.18), a

qualitative description of the internal waves received at a fixed point versus time.

Thus, at time

t0 = 
βr
2

 N2 ω0 sin2θ

N2 – ω0
2 3/2

 ω0
2 – N2cos2θ 1/2

  , (6.19)

the first internal waves of frequency ω0 given by (4.15)and maximum group velocity cg0 = r/t0

reach the point under consideration. Kato (1966 b) and Cole & Greifinger (1969) for acoustic-

gravity waves, Mowbray & Rarity (1967) and Tolstoy (1973 § 7.3) for non-Boussinesq

internal waves, investigated the structure of the associated wavefront. It is in fact a caustic:

internal waves gradually build up just prior to its arrival, and subsequently separate into two

components of frequencies ωs1 and ωs2 such that Ncosθ < ωs1 < ω0 and ω0 < ωs2 < N.

When t/r → ∞, ωs1 and ωs2 respectively tend toward Ncos θ and N, identifying the

corresponding components as gravity waves and buoyancy oscillations. Ultimately, the

Boussinesq situation is recovered.

Not only such a qualitative insight into the propagation of internal waves, but also the

related quantitative analysis, are provided by Felsen’s (1969) method. Accordingly, the build-

up of internal waves prior to the arrival of the caustic, and their subsequent decomposition into

gravity waves and buoyancy oscillations, are accounted for by an Airy function; the following

evolution of both components is described by the standard stationary-phase formula.

Unfortunately, these results rely on the graphical determination of the stationary frequencies

ωs1 and ωs2 and cannot be written in explicit form, except in the final stage t/r → ∞,  when

analytical expressions are available for ωs1 and ωs2. 

We now focus attention on that stage, when region (ii) is entered: Nt » 1 and βr is held

fixed. To avoid the neglect of evanescent internal waves, we make no further use of Felsen’s

approach and rather remark that, in region (ii), expanding the impulsive Green’s function is

again expanding an inverse Fourier transform for large times. Thus, Lighthill’s (1958)

asymptotic method is relevant again. Gravity waves and buoyancy oscillations arise as,

respectively, the contributions of the pairs of branch points ± Ncos θ and ± N of the

monochromatic Green’s function (5.2). Gravity waves are, from the expansion of G(r, ω) in

terms of (ω – Ncosθ)1/2 and its inversion by (D8),
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Gg(r, t) ~ – 
H(t)

2π 3/2Nr sin θ
  
cos Nt – 

β2
r2

8Nt sin2θ
 cos θ  – π

4

Nt cos θ
  . (6.20)

Similarly buoyancy oscillations are reducible to the inverse transform (D9), of which (D15)

provides an asymptotic expansion, so that

Gb(r, t) ~ – 
H(t)

2π 3/2 3 Nr sin θ
  

sin Nt – 3
2

 
βr sin θ

2

2/3

Nt 1/3 – π
4

Nt

          + e

– 
3 3

4  
βr sin θ

2

2/3

Nt 1/3

  

sin Nt + 3
4

 
βr sin θ

2

2/3

Nt 1/3 – π
4

Nt

  . (6.21)

As in the Boussinesq case an alternative expression of gravity waves may be proposed; its

derivation is outlined in appendix C.

Buoyancy oscillations are now waves, to which non-Boussinesq effects have given

some propagation. Contrary to gravity waves, they comprise both propagating and

evanescent internal waves. However, as long as the Boussinesq approximation is not made,

evanescent waves decay exponentially with time and stay negligible. In § 7.3 we shall carry

the interpretation of gravity and buoyancy waves further, by calculating their characteristics

(frequencies and wavevectors).

Ultimately both waves become Boussinesq, as

β r
2

 « Nt sin θ (6.22)

for the former, and
β rh

2
 « Nt (6.23)

for the latter. Instead of the “classical” near-field argument βz/ 2 « 1 (Hendershott 1969), two

surfaces, respectively toroidal and cylindrical, define the validity of the Boussinesq

approximation for gravity and buoyancy waves. They expand along the horizontal at velocity

2N/β and are represented in figure 8. Their existence simply reflects the complex structure of
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time-dependent internal wave fields; the significance of (6.22) and (6.23) remains, in

agreement with Lighthill (1978 § 4.2), small wavelengths λ « 2/β.

For buoyancy waves the Boussinesq approximation is moreover non-uniform. As

(6.23)becomes valid evanescent waves become comparable with propagating waves until

in the end, when non-Boussinesq terms vanish in (6.21), both contributions are the same.

Then the buoyancy oscillations appearing in (6.15) are recovered, but multiplied by 2/√3.

Such a non-uniformity is not surprising, since making both β → 0 and ω → N in (5.2) is clearly

contradictory. Again we postpone the interpretation of this phenomenon until § 7.3 and just

note, as regards its mathematical significance, that it is due to the coalescence of two saddle

points with a branch point of both the argument of the exponent and the amplitude (cf.

appendix D). To this case the uniform asymptotic expansions of Bleistein & Handelsman

(1986 ch. 9) do not seem to apply.
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7. INTERNAL W AVE FIELD OF A POINT MASS SOURCE

As the internal potential generated by a point mass source, the Green’s function has

no direct physical significance and its interpretation requires the consideration of the associated

pressure and velocity fields. In the present section, for an impulsive source m(r, t) = m0 δ(r)

δ(t) releasing a volume m0 of fluid, we deduce these fields from the Green’s function, b y

multiplying it by m0 and derivating it according to (3.11)-(3.12). There may, however, be

instances where the Green’s function has a meaning in itself, such as the Cauchy problem for

internal waves (Sekerzh-Zen’kovich 1982); see appendix B.

7.1. Monochromatic waves

Continuing the approach of section 5, we first deal with a monochromatic source, and

replace in (3.11)-(3.12)∂/∂t by iω. Then, the differentiation of G(r, ω) yields

P(r, ω) = i 
ρ00m0

4π r
 ω 

ω2 – N2

ω2 – N2cos2θ

1/2
 e

– 
βr
2

 ω2 – N2cos2θ
ω2 – N2

1/2

  , (7.1)

v (r, ω) = m0

4π r2
 ω2 

ω2 – N2 1/2

ω2 – N2cos2θ 3/2
 e

– 
βr
2

 ω2 – N2cos2θ
ω2 – N2

1/2

              ×   1 + 
βr
2

 
ω2 – N2cos2θ

ω2 – N2

1/2

 rr + 
βr
2

 
ω2 – N2cos2θ

ω2 – N2
 ez   . (7.2)

Non-Boussinesq effects add a vertical component to the radial motion of the fluid. In the

frequency range Ncos θ < ω < N of propagating internal waves the radial and vertical

velocities are out of phase, for the term in square brackets in (7.2) is complex. Thus, the

trajectories of fluid particles are elliptical, in agreement with the group velocity theory.

Under the Boussinesq approximation the pressure and velocity fields become

PB(r, ω) = i 
ρ0m0

4π r
 ω 

ω2 – N2

ω2 – N2cos2θ

1/2
  , (7.3)

vB(r, ω) = m0

4π r2
 ω2 

ω2 – N2 1/2

ω2 – N2cos2θ 3/2
 rr  . (7.4)

Consistently with the neglect of density variations ρ00 has been replaced by ρ0 in (7.3). Fluid
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particles move as expected along radial trajectories. Out of the characteristic cone the pressure

and velocity are π/2 out of phase implying that no energy flux, proportional to Re [Pv *] where

* denotes a complex conjugate (see Lighthill 1978 § 4.2), is radiated. Energy, and thus

internal waves, are confined on the cone, where they diverge. There, point sources are no

more an adequate model of real sources of internal waves. Only the consideration of the finite

extent of the latter will account for the radial decrease as 1/√r, and the transverse phase

variations, experimentally exhibited by McLaren et al. (1973).

7.2. Boussinesq impulsive waves

Passing to impulsive internal waves we commence as in § 6.1 by studying the

Boussinesq pressure and velocity fields. For small times Nt « 1, either differentiating (6.7)

according to (3.11)-(3.12)or asymptotically inverting (7.3)-(7.4)by (D1), we obtain

PB(r, t) ~ 
ρ0m0

4π r
 δ'(t)  , (7.5)

vB(r, t) ~ m0

4πr2
 rr δ(t)  . (7.6)

The pressure and velocity impulses necessary to set the fluid into motion are recovered (cf.

appendix B).

In similarly differentiating the expansion of the Green’s function for large times Nt » 1,

care must be taken to retain the first two orders of (6.8) and (6.10) so as to recover the

presence of buoyancy oscillations. Lighthill’s (1958) method may also be applied to (7.3)-

(7.4), in which cases it involves (D3)-(D4). Both procedures yield

PB(r, t) ~ – H(t) 
ρ0N2m0

2π 3/2r
  sin θ cos θ  

sin Nt cos θ  – π/4

Nt cos θ
 – 1

sin θ
 
sin Nt – π/4

Nt 3/2
  , (7.7)

vB(r, t) ~ – H(t) Nm0

2π 3/2r2
 rr  sin θ Nt cos θ  sin Nt cos θ  – π/4  + 1

sin3θ
 
cos Nt – π/4

Nt 3/2
  .

(7.8)

The phase Φg = Ntcos θ – π/4 of gravity waves is, apart from a phase lag of π/4,

identical to that deduced from the consideration of group velocity. Thus, gravity waves

propagate as the locally plane waves described in § 4.1, with the group velocity cg = r/t and

the frequency and wavevector
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ωg = 
∂Φg

∂t
 = N cos θ   , (7.9)

kg = – ∇Φg = Nt
r  rr × r

r × ez  sgn z  . (7.10)

The pressure and velocity oscillate in phase and verify, consistently with (4.5),

vg ~ tr 
Pg

ρ0
 rr   . (7.11)

Note, however, that the velocity grows with time as √t and ultimately diverges (Zavol’skii &

Zaitsev 1984), the pressure simultaneously decreasing as 1/√t so as to maintain the radiated

energy flux finite. Meanwhile, the wavelength λg given by (4.8) decays as 1/t and may

eventually become smaller than intermolecular distances (Sobolev 1965 p. 203), vitiating the

continuous medium model. Clearly, a cutoff eliminating the ultimate dominance of the smaller

wavelengths is needed (Lighthill 1978 p. 359). As above, the consideration of the finite

dimensions of real sources will provide it.

The phase Φb = Nt – π/4 of buoyancy oscillations confirms that they do not propagate,

whereas their amplitude shows them to be present everywhere and to induce a radial motion

of fluid particles, in contrast to the predictions of the Boussinesq group velocity theory. This

testifies to their non-Boussinesq origin. The pressure and velocity are π/2 out of phase,

implying a zero energy flux. Compared with gravity waves buoyancy oscillations decrease

with time as t –3/2 and remain negligible. This is contradictory to the ultimate dominance of

oscillations of the fluid at the buoyancy frequency, experimentally found by McLaren et al.

(1973) for transient internal waves. The explanation for this phenomenon lies, again, in the

finite size of real sources.

Exact integral expressions of the pressure and velocity fields follow from the same

method that has been used to derive the spectral decompositions (5.12) and (5.16) of the

Green’s function. Amendments are nevertheless required, since (7.4) is not integrable at the

singularities ± Ncos θ. A method to circumvent this difficulty, which turns out to be equivalent

to that proposed by Zavol’skii & Zaitsev (1984), may be found in Voisin (1991). It yields for

the pressure

PB(r, t) = 
ρ0m0

2π2r
  π

2
 δ'(t) + H(t) ω 

N2 – ω2

ω2 – N2cos2θ
  cos ωt dω

N cos θ

N

  , (7.12)
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and for the displacement vector ζζζζB, related by vB = ∂ζζζζB/∂t to the velocity,

ζζζζB(r, t) = H(t) m0

2π2r2
 rr   π

2
 cos Nt cos θ

+ ω 
N2 – ω2 1/2

ω2 – N2cos2θ 3/2
 cos Nt cos θ  – cos ωt  dω

N cos θ

N

   . (7.13)

Zavol’skii & Zaitsev (1984) compared the numerical calculation of (7.13) with the

gravity wave part of its large-time expansion, readily derived from (7.8). They concluded that,

very early, the asymptotic result is valid, from the level of the source to the conical nodal

surface lying closest to the vertical, that is in a region of space which becomes larger and larger

as time elapses. After one buoyancy period (Nt/2π = 1) for instance, (7.8) induces an error

smaller than 5% for all points verifying 40° < θ < 140°. At the same time buoyancy oscillations

are confirmed to be negligible in that zone.

7.3. Non-Boussinesq impulsive waves

Investigating now the influence of non-Boussinesq effects on impulsive internal waves,

we just consider the large-time pressure field. Either differentiating (6.20)-(6.21) according to

(3.12) or applying Lighthill’s (1958) method to (7.1), in which case (D8) and (D15) are

involved, we obtain for gravity and buoyancy waves, respectively,

Pg(r, t) ~ – H(t) 
ρ00N2m0

2π 3/2
 sin θ cos θ

r  
sin Nt – 

β2
r2

8Nt sin2θ
 cos θ  – π

4

Nt cos θ
  , (7.14)

Pb(r, t) ~ H(t) 
ρ00N2m0

2π 3/2 3
 1
r sin θ

 
βr sin θ

2Nt

2/3

 

cos Nt – 3
2

 
βr sin θ

2

2/3

Nt 1/3 – π
4

Nt
  . (7.15)

In the latter evanescent waves, which either are negligible compared with propagating waves

in the non-Boussinesq case, or equal to them when the Boussinesq situation is reached, have

been omitted.

From the phases of gravity and buoyancy waves we deduce their frequencies and

wavevectors by differentiation (cf. (7.9)-(7.10)), as
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ωg = N cos θ  1 + 1
2

 
βr

2Nt sin θ

2

  , (7.16)

kgh = Nt
r  sin θ cos θ  rh

rh
  1 – 1

2
 

βr

2Nt sin θ

2

 
3 cos2θ – 1

sin2θ
  , (7.17a)

kgz = – Nt
r  sin2θ sgn z 1 – 1

2
 

βr

2Nt sin θ

2

 3 cos2θ + 1
sin2θ

  , (7.17b)

and

ωb = N 1 – 1
2
 

βrh

2Nt

2/3

  , (7.18)

kb = – Nt
rh

 
βrh

2Nt

2/3

 rh
rh

 = – 
β
2

 2Nt
βrh

1/3

 rh
rh

  . (7.19)

In both cases (4.12)still relates ω and k.

As expected non-Boussinesq effects involve the small parameters (βr)/(2Nt sin θ)

and (βrh)/(2Nt), and give to buoyancy oscillations a horizontal propagation. To leading order

the wavelength of gravity waves reduces to (4.8) and is constant on tori, whereas the

wavelength of buoyancy waves,

λb = 2π
kb

 = 2π
Nt

 rh 2Nt
βrh

2/3

 = 4π
β

 
βrh

2Nt

1/3

  , (7.20)

is constant on cylinders. Thus, non-Boussinesq transient internal wave fields are ruled by two

surfaces, a torus and a cylinder, represented in figure 8. On them the wavelengths of gravity

and buoyancy waves are comparable with the scale height 2/β of the stratification; well inside

them λ « 2/β and the Boussinesq situation is recovered.

As long as gravity and buoyancy waves remain fully non-Boussinesq, that is near to

the cylinder, (βrh)/(2Nt) is finite and both waves are O((Nt)–1/2). As the cylinder is entered the

nature of buoyancy waves changes until eventually, when (6.23) is verified, they become

Boussinesq buoyancy oscillations. Then, although their wavelength is zero and their

wavenumber infinite (as implied by the second form of kb), the spatial variations of their

phase are negligible compared with its time variations (as implied by the first form of kb).

Meanwhile, the leading-order term in their pressure vanishes so that they are now O((Nt)–3/2).
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Thus, buoyancy waves have simultaneously “lost” their propagation and become insignificant

compared with gravity waves.

No attempt has been made to calculate the non-Boussinesq O((Nt)–3/2) term in (7.15),

but it is anticipated that for it the Boussinesq approximation should be uniform and that (7.7)

should be recovered as (βrh)/(2Nt) → 0. This should provide a physical explanation for the

non-uniformity of the Boussinesq approximation for buoyancy waves.
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8. INTERNAL W AVE RADIA TION BY A PULSA TING SPHERE

As the simplest example of a source of internal waves with finite dimensions we

consider in this section a sphere of radius a, on which surface the normal velocity U(t) is

imposed. Particular attention will be paid to the far-field modelling of the sphere by the

equivalent point mass source, a monopole of strength 4πa2 U(t) (cf. Pierce 1981 § 4.1 and

4.3). From the preceding section, non-Boussinesq effects upon internal wave generation

appear to be satisfactorily accounted for by the consideration of point sources. Accordingly,

our investigations will be restricted to the Boussinesq case.

Although Hendershott (1969) has already treated both monochromatic and transient

Boussinesq pulsations of a sphere, his results are invalidated by the error mentioned in

appendix C. Appleby & Crighton (1987) also dealt with monochromatic internal waves, and

Grimshaw (1969) with transient internal waves, generated by a sphere undergoing

monopolar or dipolar motion. The present work is complementary to theirs, in that the link

between point and extended sources is investigated.

8.1. Exact solution

Under the Boussinesq approximation the internal wave equation (3.10), and the

condition of fixed radial velocity at the surface of the sphere, become (subscripts B will from

now on be omitted)

∂2

∂t2
 ∆ + N2 ∆h  ψ(r, t) = 0  , (8.1)

∂2

∂t2
 r 

∂
∂r

 + N2 rh 
∂

∂rh

 ψ(r, t) = aU(t)     at     r = a  . (8.2)

We solve them by the method we used to calculate the Green’s function; then we deduce the

pressure and velocity fields from the internal potential, by differentiating it according to the

Boussinesq versions of (3.11)-(3.12). Thus we consider first monochromatic waves, described

b y

ω2 – N2  ∆h + ω2 
∂2

∂z2
 ψ(r, ω) = 0  , (8.3)

ω2 – N2  rh 
∂

∂rh

 + ω2 z 
∂

∂z
 ψ(r, ω) = – aU(ω)     at     r = a  , (8.4)
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and apply Pierce’s (1963) procedure to them.

For ω > N, the change of coordinates (5.1) transforms (8.3) into Laplace’s equation and

applies (8.4) at the surface of an oblate spheroid, suggesting the introduction of the

appropriate spheroidal coordinates (Morse & Feshbach 1953 p. 662). Stretched oblate

spheroidal coordinates, defined by

rh = a N
ω

  ξ2
 + 1

1/2
 1 – η2 1/2  , (8.5a)

z = a N

ω2 – N2 1/2
  ξη  ,            (8.5b)

result from the combination of the two transformations. By introducing the frequencies Σ+ and

Σ– of internal waves emanating from the points of contact T+ and T– of the uppermost and

lowermost tangents through the point r to the sphere (figure 9), according to

Σ± = N cos θ±  = N cos θ ± α  = N 1 – a
2

r2
 cos θ +– ar sin θ   , (8.6)

the definition of ξ and η is inverted into

ξ2
, η2  = ±  

ω2 – Σ+
2 1/2

 ± ω2 – Σ–
2 1/2

2N

2

 r2

a2
  – cos2θ   . (8.7)

The upper sign is associated to ξ and the lower one to η; ξ is made one-valued by requiring it

to be positive as ω → ∞. In terms of ξ and η we have the differentiation rules

1
rh

 
∂

∂rh
 = 1

r2
 ω2

ω2 – Σ+
2 1/2

 ω2 – Σ–
2 1/2

  ξ 
∂

∂ξ
 – η 

∂

∂η
  ,                  (8.8a)

1
z 

∂
∂z

 = 1
r2

 
ω2 – N2

ω2 – Σ+
2 1/2

 ω2 – Σ–
2 1/2

  
ξ2

 + 1

ξ
 

∂

∂ξ
 + 

1 – η2

η
 

∂

∂η
  . (8.8b)

Then the original system of equations (8.3)-(8.4)becomes

 
∂

∂ξ
  ξ2

 + 1  
∂

∂ξ
 + 

∂

∂η
  1 – η2  

∂

∂η
  ψ(r, ω) = 0  , (8.9)
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∂

∂ξ
 ψ(r, ω) = – N

ω2 ω2 – N2 1/2
 aU(ω)     at     ξ = 

ω2 – N2 1/2

N
  . (8.10)

As indicated by (8.10), internal waves do not depend of the “angular” coordinate η

because of the monopolar type of motion of the sphere. The internal potential is given by

ψ(r, ω) = i 
aU(ω)

2N ω2 – N2 1/2
  ln 

ξ – i

ξ + i
  . (8.11)

From its differentiation, and the use of (8.8), the pressure and velocity fields follow as

P(r, ω) = – ρ0aU(ω) 
ω ω2 – N2 1/2

2N
  ln 

ξ – i

ξ + i
  , (8.12)

vh(r, ω) = U(ω) 
ω2 ω2 – N2 1/2

N ω2 – Σ+
2 1/2

 ω2 – Σ–
2 1/2

  
ξ

ξ2
 + 1

  ar  sin θ  rh
rh

  , (8.13)

vz(r, ω) = U(ω) 
ω2 ω2 – N2 1/2

N ω2 – Σ+
2 1/2

 ω2 – Σ–
2 1/2

  1
ξ

  ar  cos θ  . (8.14)

Causality extends these results along the whole real ω axis, by (5.3). Thus, ξ becomes a

complex coordinate. Once U(ω) has been replaced by its value, Fourier inverting (8.11)-(8.14)

finally provides the internal waves generated by any pulsation U(t) of the sphere.

In dealing in what follows with monochromatic and impulsive pulsations we shall

consider internal waves at large distances r » a from the sphere. There Σ± approach the

frequency Ncosθ of the waves emanating from the origin, according to

Σ± ~ N cos θ  +– N ar sin θ sgn z  , (8.15)

and ξ » 1 for almost any frequency. The internal wave field simplifies into

ψ(r, ω) ~ 
aU(ω)

N ω2 – N2 1/2
 1
ξ

  , (8.16)

P(r, ω) ~ i ρ0aU(ω) 
ω ω2 – N2 1/2

N
 1
ξ

  , (8.17)
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v (r, ω) ~ U(ω) 
ω2 ω2 – N2 1/2

N ω2 – Σ+
2 1/2

 ω2 – Σ–
2 1/2

 1
ξ

 ar rr  . (8.18)

The motion of fluid particles is radial as if, again, the waves emanated from the origin.

8.2. Monochromatic far field

The sphere is supposed to pulsate monochromatically, at the frequency 0 < ω < N. If

U(t) = U0 eiωt, and the time dependence eiωt is omitted in all variables, the internal wave field is

given by (8.16)-(8.18)with U(ω) replaced by U0. According to the different values of the now

complex coordinate ξ the space must be divided into six regions (figure 10), separated b y

the characteristic cones, of vertical axis and semi-angle θ0 = arc cos (ω/N), tangent to the

sphere (Hendershott 1969, Appleby & Crighton 1987).

In regions II , IV and VI ξ is either real or imaginary, the phase of internal waves does

not vary and no energy is radiated. More precisely ξ reduces in the far field r » ato

ξ ~ 
ω2 – N2cos2θ 1/2

N
 r
a  , (8.19)

so that

ψ(r) ~ aU0

ω2 – N2 1/2 ω2 – N2cos2θ 1/2
 ar = 4πa2U0 G(r, ω)  . (8.20)

The pressure and velocity are similarly given by (7.3)-(7.4), with m0 replaced by 4πa2U0.

Regions II , IV and VI are those where the point source model is valid; in agreement with §

7.1 they also are those where no internal waves are found.

On the other hand, in regions III and V ξ is complex, implying phase variation and

energy radiation. Since cos θ → ω/N as r/a → ∞, (8.19) is invalidated. It must be taken into

account that transverse distances, represented by Hurley’s (1972) characteristic coordinates

(cf. figure 10)

σ± = r sin θ +– θ0  = ω
N

 rh +– N2 – ω2

N
 z  , (8.21)

remain as the far field is approached finite and nonzero. In region III for instance, as r » a >

σ+,

rh ~ 
N2 – ω2

N
 r + ω

N
 σ+        and        z ~ ω

N
 r – 

N2 – ω2

N
 σ+  , (8.22)
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so that

ξ2
 ~ 

ω N2 – ω2

N2
 r
a e

– i arc cos σ+/a
  . (8.23)

Then the internal wave field is given by

ψ(r) ~ i  aU0

ω1/2 N2 – ω2 3/4
 a

r  e i/2  arc cos σ+/a   , (8.24)

P(r) ~ ρ0aU0 ω1/2 N2 – ω2 1/4 a
r  e i/2  arc cos σ+/a   , (8.25)

v (r) ~ U0
2

 ω1/2

N2 – ω2 1/4
 a

r  a
a2 – σ+

2
 rr e i/2  arc cos σ+/a   . (8.26)

This expression makes Appleby’s & Crighton’s (1987) result for a pulsating sphere more

explicit, and is similar to Lighthill’s (1978 § 4.10) result for a distributed mass source.

The phase Φ = ωt + (1/2) arc cos (σ+/a) varies transversely, in agreement with the

experiments of McLaren et al. (1973). From its differentiation with respect to σ+ (cf. (7.10)) we

deduce the transverse wavelength λ = 4π (a2 – σ+
2)1/2,and the phase and group velocities

cφ = ω
k

 = 2 ω a2 – σ+
2   , (8.27)

cg = N2 – ω2

k
 = 2 N2 – ω2  a2 – σ+

2   , (8.28)

which are zero at the edges σ+ = ± a of region III and maxima halfway between them. The

definition of λ is, however, of purely academic interest, since not even a single oscillation of the

phase takes place between these edges. Only a continuous monotonic variation of π/2 in Φ is

observed, which replaces the phase jump obtained in § 5.1 between regions II and IV .

Interpreting it as a quarter of an oscillation we rather introduce, as did Appleby & Crighton

(1987), an effective wavelength “ λ” = 8a.

The pressure and velocity oscillate in phase and verify, consistently with (4.5),

v  ~ P
2 ρ0 N2 – ω2 a2 – σ+

2
 rr  . (8.29)

Their decrease as 1/√r, conformable to the conservation of energy for conical waves, coincides

with the experiments of McLaren et al. (1973) again. The velocity singularity at the edges of
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region III remains integrable, and the energy flux consequently finite.

8.3. Impulsive far field

We now consider an impulsive pulsation U(t) = U0 δ(t) of the sphere, for which U(ω) =

U0, and investigate by the asymptotic method of § 6.1 the radiated internal waves. For small

times Nt « 1, from the high-frequency expansion of (8.16) (ξ ~ (ω/N) (r/a)) and its Fourier

inversion by (D2), we have

ψ(r, t) ~ – H(t) a
2U0
r  t ~ 4πa2U0 G(r, t)   . (8.30)

Similarly the pressure and velocity are given by (7.5)-(7.6), with m0 replaced by 4πa2U0. As

expected the initial motion is irrotational, and the point source model is then valid.

For large times Nt » 1, internal waves separate again into gravity waves (the

contribution of the singularities ± Σ+, ± Σ–) and buoyancy oscillations (the contribution of the

singularities ± N). For both of them, although for different reasons, the far-field assumption r » a

is contradictory to the use of Lighthill’s (1958) method. Thus, we relax it at first. The procedure

we shall use instead closely follows that of Bretherton (1967) and Grimshaw (1969).

For gravity waves, as long as r/a remains finite, Σ+ and Σ– remain separated and

Lighthill’s method still applies. After some algebra we find in the vicinity of Σ±, omitting a

regular part which makes no contribution to the large-time expansion,

ln 
ξ – i

ξ + i
 ~ +– i 1 – a

2

r2

1/4
 2

sin θ± sin θ
1/2

 
ω – Σ±

Σ±

1/2

 sgn cos θ±  . (8.31)

Inverting then (8.11) by (D3) we finally obtain for rh > a

ψg(r, t) ~ 
H(t)
2π

 aU0
N

 1 – a
2

r2

1/4
 1

sin θ

×  cos θ+

sin θ+
3/2

 
sin Σ+t – π/4

Σ+t
3/2

 – 
cos θ–

sin θ–
3/2

 
sin Σ– t – π/4

Σ– t
3/2

   ,                  (8.32a)

and for rh < awith (z > 0, z < 0)
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ψg(r, t) ~ 
H(t)
2π

 aU0
N

 1 – a
2

r2

1/4
 1

sin θ

×  cos θ+

sin θ+
3/2

 
sin, cos Σ+t – π/4

Σ+t
3/2

 – 
cos θ–

sin θ–
3/2

 
cos, sin Σ– t – π/4

Σ– t
3/2

   . (8.32b)

Accordingly the gravity wave field results from the interference between the waves emanating

from the points T+ and T– of the sphere.

As the far field r » a is entered, the separation between T+ and T– vanishes in the

amplitude of these waves but is still present in their phase; there it reduces to the small but

fundamental difference (8.15)between Σ+ and Σ–. Then (8.32a)becomes

ψg(r, t) ~ – H(t) 2
π

 aU0
N

 
cos θ
sin2θ

 sin Nt ar sin θ  
cos Nt cos θ  – π/4

Nt cos θ 3/2
  , (8.33a)

~ 4πa2U0 
sin kga

kga
 Gg(r, t)  .                                            (8.33b)

The interferences between T+ and T– take on the familiar form of a factor sin (kga) / (kga), with k

g the wavevector (7.10), multiplying the gravity waves radiated by a point impulsive source

releasing the volume 4πa2U0. The same is true of the pressure and velocity, which vary as

t –3/2 and t –1/2, respectively, and remain at any t finite. Where the sphere is small compared

with the wavelength λg of gravity waves, as

r
a » Nt sin θ  , (8.34)

the interferences are constructive and the point source is equivalent to the sphere. As for the

Boussinesq approximation a torus, hereafter called characteristic, of vertical axis and radius

Nta, defines the validity of the point source model for gravity waves.

Note that the distinction between the two forms (8.32) and (8.33) of gravity waves

corresponds to the separation of space into two regions similar to those encountered in § 6.2:

(i) Nt » 1 with r/t fixed, (ii) Nt » 1 with r/a fixed (Bretherton 1967, Grimshaw 1969). (8.32) is

relevant in region (ii), and (8.33) at the boundary between regions (i) and (ii). A particular

feature of the pulsating sphere is that (8.33) remains valid across the whole of region (i); see

Voisin (1991).

For buoyancy oscillations ξ vanishes in the vicinity of N for rh < a, according to
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       ξ ~ 
rh
2 – a2

a                                               rh > a  , (8.35a)

          ~ 2 
z

a2 – rh
2

 
ω – N

N

1/2
                      rh < a  . (8.35b)

There (8.16)-(8.18), which rely upon the fact that ξ » 1, no longer describe the far field. Thus

we directly apply Lighthill’s method to (8.11)-(8.14), use (D3)-(D4), and find

ψb(r, t) ~ – H(t) 2
π

 aU0
N

  arc sin arh
  
sin Nt – π/4

Nt
             rh > a  , (8.36a)

            ~ – H(t) π
2

 aU0
N

  
sin Nt – π/4

Nt
                                rh < a  , (8.36b)

Pb(r, t) ~ H(t) 2
π

 ρ0N2aU0  arc sin arh
  
sin Nt – π/4

Nt 3/2
             rh > a  , (8.37a)

            ~ H(t) π
2

 ρ0N2aU0  
sin Nt – π/4

Nt 3/2
                                rh < a  , (8.37b)

vb(r, t) ~ – H(t) 2
π

 NU0 a
rh
2 – a2

  arh

rh
2

 , az
rh
2 – a2

 
cos Nt – π/4

Nt 3/2
         rh > a  , (8.38a)

~ 0 rh < a  . (8.38b)

For rh < a the velocity field is made zero by the regularity of (8.13)-(8.14)near N. For rh > a the

two terms in brackets respectively denote its horizontal and vertical components.

Inside the vertical cylinder circumscribing the sphere buoyancy oscillations induce no

motion of the fluid. On the cylinder the velocity diverges. Outside it the way that the finite

extent of the sphere modifies buoyancy oscillations is different for (ψb , Pb) on the one hand, v

b on the other hand. For ψb for instance,

ψb(r, t) ~ 4πa2U0 rh
a arc sin a

rh
 Gb(r, t)  . (8.39)

In both cases, however, very far from the cylinder, as

rh » a  , (8.40)

the point impulsive source releasing a volume 4πa2U0 is equivalent to the sphere again.

Although this criterion is conformable to the cylindrical nature of the surfaces where the
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wavelength (7.20)of buoyancy oscillations is constant, the explanation for its exact form does

not involve this wavelength; see Voisin (1991).

The structure of impulsive internal waves, generated by the sphere, consequently

evolves as follows (figure 11), in the far field r » aand for large times Nt » 1. At first, for a fixed

observer, the sphere behaves like a point and the internal wave field is dominated by gravity

waves. The surfaces of constant phase are conical and the wavelength decreases as t –1; the

pressure decays as t –1/2 while the velocity grows as t 1/2. Next the characteristic torus, which

expands along the horizontal at the velocity Na, reaches the point under consideration. The

wavelength becomes comparable with the radius of the sphere, and gravity waves are

“blurred” by the interferences between the points T+ and T–. Now both pressure and velocity

decay, as t –3/2 and t –1/2 respectively. So buoyancy oscillations, for which they vary as t –3/2,

become of the same order as gravity waves. Further inside the torus interferences turn out to

be destructive and gravity waves vanish. There only remain buoyancy oscillations, whose

structure is ruled by the vertical cylinder circumscribing the sphere. Far from it, the point source

model is valid again; near to it, “interferences” of a special kind arise; inside it, the fluid stays at

rest.

The experiments of Stevenson (1973) for an impulsive source and McLaren et al.

(1973) for a transient source both confirm this discussion. The former exhibited the

disappearance of gravity waves inside an expanding surface of roughly toroidal shape, and

the latter showed the ultimate dominance of oscillations of the fluid at the buoyancy frequency.

Similarly, an ultimate passage from gravity waves to buoyancy oscillations has been shown

by the theoretical studies of Sekerzh-Zen’kovich (1982) and Chashechkin & Makarov (1984).
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9. CONCLUSION

In this paper a complete examination of the Green’s function of internal gravity waves

has been attempted. For both monochromatic and impulsive waves, in both Boussinesq and

non-Boussinesq cases, the Green’s function has been calculated. From it the pressure and

velocity fields radiated by a point source have been deduced; parallel to it the Boussinesq

internal waves generated by a pulsating sphere have been derived. In so doing not only a

first, mainly mathematical, aim has been achieved, namely to synthesize and complement

previous fragmentary and sometimes contradictory results about the Green’s function; also a

second, mainly physical, aim has been reached, namely to analyse three interrelated

principles which appear to rule the generation of internal waves: the dual structure of time-

dependent internal wave fields, which combine gravity and buoyancy waves, the validity of

the Boussinesq approximation, and the validity of the point source model.

To deal with both the Green’s function and the pulsating sphere, the method we used

is the same and applies to any problem of internal wave radiation. Monochromatic waves are

considered first, by a complex coordinate transformation which reduces the internal wave

equation to a Helmholtz equation; causality makes the transformation determinate. Then

impulsive waves are investigated in the small- and large-time limits, in which cases they follow

from the expansions of monochromatic waves near high and singular frequencies,

respectively, and their Fourier inversion with respect to time.

At a fixed frequency ω < N, the Green’s function satisfactorily describes non-

Boussinesq internal waves, propagating outside and evanescent inside the characteristic cone

cos θ = ω/N, θ denoting the observation angle from the upward vertical. Under the

Boussinesq approximation, on the contrary, the Green’s function is consistent with the

confinement of the waves on this cone but fails to represent them there; thus, the point source

model must be given up. Replacing it by a sphere gives the cone a width equal to the

diameter of the sphere; in this conical shell an explicit expression of the waves is found, which

accounts for their 1/√r radial decay, and their transverse phase variations.

For large times Nt » 1 after an impulse, internal waves split into gravity and buoyancy

waves; the splitting follows the arrival of an Airy wave and is attributable to non-Boussinesq

effects. As time elapses, the two components increasingly separate and ultimately lose, even

if only superficially, their non-Boussinesq nature. Boussinesq gravity waves are plane

propagating internal waves of frequency Ncos θ, whose wavelength
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λg = 2π
Nt

 r
sin θ

(9.1)

is constant on tori. Boussinesq buoyancy waves are radial oscillations at frequency N, found

everywhere in the fluid; in actual fact they are propagating waves, of horizontal wavevector

and wavelength

λb = 4π
β

 
βrh

2Nt

1/3

(9.2)

constant on cylinders (rh denotes the horizontal distance from the source and 2/β the scale

height of the stratification), whose propagation has vanished as they have become

Boussinesq.

For both gravity and buoyancy waves the Boussinesq approximation implies small

wavelengths λ « 2/β. Thus it is valid, for the former when

β r
2

 « Nt sin θ  , (9.3)

and for the latter when
β rh

2
 « Nt  , (9.4)

that is inside a torus of vertical axis and radius 2Nt/β, and inside the circumscribing cylinder,

respectively (figure 8). As these regions are entered buoyancy waves, initially comparable

with gravity waves, simultaneously lose their propagation and become less significant.

There two separate criteria define, again, the validity of the point source model; for a

spherical source of radius a « 2/β they are

r
a » Nt sin θ (9.5)

for gravity waves, and
rh » a (9.6)

for buoyancy oscillations. Outside the torus of vertical axis and radius Nta, gravity waves are

dominant (figure 11); for them the sphere is compact, since a « λg. Inside this torus

interferences caused by the finite size of the sphere blur gravity waves, and buoyancy

oscillations are observed. For them the sphere is compact far from the vertical cylinder

circumscribing it. Inside this cylinder the fluid is quiescent.
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Let us finally emphasize that, however different from the fields of acoustic or

electromagnetic waves internal wave fields may be, their structure is governed by the same

underlying principles, with the amendments required by the special form of the wavelengths

(9.1) and (9.2) of their two components. To illustrate this fact table 1 compares the different

zones of a Boussinesq gravity wave field with those of acoustic and electromagnetic wave

fields (cf. Jackson 1975 § 9.1 and Pierce 1981 § 4.7).
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Appendix A. INTERNAL W AVE GENERA TION BY POINT MASS AND FORCE
SOURCES

When a force source F per unit volume is added to the mass source considered in §

3.1, the horizontal motion of the fluid may become rotational. No internal potential exists any

more, and a direct derivation of the equations verified by the physical variables v, P and ρ

must be performed. In terms of the vertical displacement ζz and the pressure P, eliminating vh

and ρ from (3.2)-(3.4), then removing the density factors (3.9), we obtain

L ζz = 
∂

∂z
 – 

β
2

 
∂

∂t
 e–βz/2 m  – 1

ρ00
 ez.∇∇∇∇ × ∇∇∇∇ – 

β
2

 ez  × eβz/2 F   ,            (A1)

L P = – ρ00 
∂2

∂t2
 + N2  

∂

∂t
 e–βz/2 m  + 

∂2

∂t2
 ∇∇∇∇ + 

β
2

 ez  + N2 ∇∇∇∇h  . eβz/2 F   , (A2)

where

L = 
∂2

∂t2
 ∆ – 

β2

4
 + N2 ∆h  . (A3)

From these equations, and the definition (3.14) of the Green’s function G(r, t), the

internal wave field generated by the point mass and force sources m(r, t) = m0 δ(r) δ(t) and F

(r, t) = F0 δ(r) δ(t) readily follows as

ζz(r, t) = m0 
∂

∂z
 – 

β
2

 
∂

∂t
 – 1

ρ00
 F0h 

∂

∂z
 – 

β
2

 – F0z ∇∇∇∇h  .∇∇∇∇h  G(r, t)  ,      (A4)

P(r, t) = – ρ00 m0 
∂2

∂t2
 + N2  

∂
∂t

 + F0.
∂2

∂t2
 ∇∇∇∇ + 

β
2

 ez  + N2 ∇∇∇∇h   G(r, t)  . (A5)

For the point mass source P(r, ω) has already been calculated in (7.1), while ζz(r, ω) reduces to

– i/ω times the vertical component of the velocity (7.2). Closely analogous are the pressure
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P(r, ω) = 
F0z

4π r2
 ω2 

ω2 – N2 1/2

ω2 – N2cos2θ 3/2
 e

– 
βr
2

 ω2 – N2cos2θ
ω2 – N2

1/2

              ×   1 + 
βr
2

 
ω2 – N2cos2θ

ω2 – N2

1/2

 cos θ + 
βr
2

 
ω2 – N2cos2θ

ω2 – N2
   , (A6)

and the vertical displacement (in the non-Boussinesq far field βr/2 » 1)

ζz(r, ω) ~ 
F0z

4πρ00r3
 
β2

r2

4
 ω4 sin2θ

ω2 – N2 3/2 ω2 – N2cos2θ 3/2
 e

– 
βr
2

 ω2 – N2cos2θ
ω2 – N2

1/2

  , (A7)

generated by a vertical point force source.

Sarma & Naidu (1972 a), Ramachandra Rao (1973) and Grigor’ev & Dokuchaev

(1970) considered the pressure field, and Rehm & Radt (1975) the Boussinesq vertical

displacement, radiated by a monochromatic point mass source. Then Sarma & Naidu

(1972 b) and Ramachandra Rao (1975) obtained the pressure, and Tolstoy (1973 § 7.3) the

far-field non-Boussinesq vertical displacement, generated by a vertical point force source. Of

all these calculations only those of Sarma & Naidu (1972 a, b), Ramachandra Rao (1975) and

Tolstoy (1973) disagree with ours, the discrepancies being extra factors –1/2 if ω > N and

+1/2 if ω < N for Ramachandra Rao, –1/2 for Tolstoy. The 1975 result of Ramachandra Rao

is moreover not consistent with his 1973 one, while the pressure of Sarma & Naidu never

propagates. In § 5.1 an explanation for these differences is given.
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Appendix B. INITIAL CONDITIONS FOR BOUSSINESQ INTERNAL WAVES

According to the discussion by Batchelor (1967 § 6.10) of impulsively started

motions, body forces and inertial terms are initially negligible compared with the pressure

gradients and acceleration of the fluid. Thus, during that stage, a Boussinesq rotating stratified

fluid ignores both rotation and stratification. Its motion is irrotational, for the Euler equation

becomes

∂v

∂t
 = – ∇∇∇∇ P

ρ0
  . (B1)

Closely related with this reasoning is the controversy which, forty years ago, arose

about the question of initial conditions for rotating or stratified fluids. Some authors (such as

Stewartson 1952) take as initial the state of rest of the fluid; other ones (such as Morgan 1953)

claim the only valid initial conditions to be the irrotational motion (B1). The second approach,

although it may involve somewhat lengthy calculations, remains the more widely used one. In

actual fact, the controversy is but a matter of terminology: zero initial data correspond to t = 0–,

just before the start of the motion, and irrotational initial data to t = 0+, just after the motion has

begun. Any approach which is based upon generalized function theory naturally incorporates

the discontinuity at t = 0 and, whatever initial conditions are chosen, yields the same motion for

the fluid, for t < 0causal and for t > 0 initially irrotational.

This we noticed in dealing with the Green’s function; this we can prove in a more formal

way by considering Sekerzh-Zen’kovich’s (1982) solution of the Cauchy problem for

Boussinesq internal waves. For a causal mass source m(r, t), and initial data

ψ0(r) = ψ
 t = 0

        and        ψ1(r) = 
∂ψ

∂t
 
 t = 0

  , (B2)

the radiated internal waves (expressed in terms of the internal potential) are given by

ψ(r, t) =  H(t) dτ 
0

t

d3r' m r', τ  G r – r ', t – τ

   + d3r' ∆' ψ1 r'  G r – r', t  + ∆' ψ0 r'  
∂G

∂t
 r – r', t   . (B3)

For a point impulsive source releasing a unit volume of fluid, the internal potential
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reduces to the Green’s function. Now, if the initial state of the fluid is taken just before the

impulse, at t = 0–, ψ0(r) = 0, ψ1(r) = 0, m(r, t) = δ(r) δ(t) and G(r, t) arises from the mass source

term in (B3). If, on the other hand, the initial state refers to t = 0+, just after the impulse,

irrotational initial conditions are ψ0(r) = 0 and ψ1(r) = – 1/(4πr), while m(r, t) = 0; G(r, t) arises

now from the initial data term in (B3), by virtue of ∆ (1/r) = – 4π δ(r). Thus, the equivalence of

both approaches is proved for the Green’s function. As any internal wave field may be built

by a superposition of elementary impulses, this conclusion is at the same time proved from a

general point of view.
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Appendix C. ANOTHER KIND OF ASYMPTOTIC EXP ANSION

Alternative large-time expansions of the Green’s function follow from expanding G(r,

ω), in the vicinity of singularities such as ± ω0, in terms of (ω2 – ω0
2)1/2 instead of (ω – ω0)1/2. A

necessary condition for the validity of this procedure is, however, that G(r, ω) have the same

expansion near opposite frequencies. This is not a trivial restriction since, according to (5.3),

the involved square roots are not even functions of frequency.

In this way we obtain for the Boussinesq Green’s function, applying (D6) to (6.1), 

GBg(r, t) ~ – 
H(t)

4πNr sin θ
 J0 Nt cos θ   , (C1)

∂GBb

∂ t
 (r, t) ~ – H(t)

4πr sin θ
 J0 Nt   . (C2)

To leading order in (Nt)–1/2, (6.15) and (C1)-(C2) of course coincide. Hendershott (1969)

derived, for the transient gravity waves generated by a pulsating sphere (equation (39)of his

paper), an expansion of this type. To leading order his result (with the appropriate slight

modifications), upon which he bases his investigations of monochromatic internal waves,

differs from (8.33a). In particular it does not reduce when a « λg to the point source result (6.15).

This seems to be attributable to the omission of the above condition.

In the non-Boussinesq case we obtain for gravity waves, applying (D7) to (5.2),

Gg(r, t) ~ – 
H Nt – 

βr

2 sin θ
4πNr sin θ

 J0 N2t2 – 
β2

r2

4 sin2θ
 cos θ   . (C3)

To leading order, as Nt » 1 with βr fixed, (C3) coincides with (6.20); it reduces, when θ ≈ π/2, to

Dickinson’s (1969) formula (76). For gravity waves the non-Boussinesq internal wave front

may consequently be approximated by the torus βr/2 = Nt sin θ which also defines, according

to (6.22), the region of validity of the Boussinesq approximation.
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Appendix D. SOME INVERSE FOURIER TRANSFORMS

In this paper the following Fourier transforms F(ω) and original functions f(t) have been

used:

F(ω) f(t)

ωn e–i nπ/2 δ(n)
(t) (D1)

1
ωn  (n ≠ 0) H(t)  tn –1

n –1 !
  ei nπ/2 (D2)

ωα  (α non-integer) – H(t) sin απ
π

 
Γ(α+1)

tα +1
  e–i α π/2 (D3)

1
ωα

H(t) tα –1

Γ(α)
  ei α π/2 (D4)

1
ω2 – ω0

2
– H(t) sin ω0t

ω0
(D5)

1

ω2 – ω0
2 1/2

i H(t) J0 ω0t (D6)

e
–i t0 ω2 – ω0

2 1/2

ω2 – ω0
2 1/2

i H t – t0  J0 ω0 t2 – t0
2 (D7)

e–iαω1/2

ω1/2
H(t) e

– i α2/4t – π/4

πt
(D8)

e– α ω–1/2

ω1/2
  H(t) e

i π/4

πt
 e–3i nπ/4

n!
 π
Γ n +1

2

 α2t n/2∑
n=0

∞

(D9)

Here n represents a non-negative integer and α, ω0 and t0 positive real numbers.

In accordance with (3.16)-(3.17), Fourier transforms are defined by

F(ω) = f (t) e–i ωt dt ≡ FT f (t)   , (D10a)

f (t) = 1
2π

         F(ω) ei ω t dω ≡ FT–1 F(ω)   . (D10b)

They are related to Laplace transforms by
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f (t) = FT–1 F(ω)  = LT –1 F(–is)   , (D11)

where s denotes the complex variable involved in Laplace transforms.

Three methods, described in greater detail by Voisin (1991), have been used to

derive formulae (D1)-(D9): reproduction from Lighthill’s (1958 p. 43) table of Fourier

transforms, application of the residue theorem, and combination of various integrals given b y

Gradshteyn & Ryzhik (1980) and Abramowitz & Stegun (1965). (D2) differs from Lighthill’s

corresponding result, defined as a principal value. Most of the inverse Fourier transforms may

also be derived from the tables of inverse Laplace transforms of Abramowitz & Stegun

(1965 ch. 29) or Dickinson (1969), by applying (D11).

The exact inverse transform (D9), a power series of t1/2, is of little interest as a large-

time expansion. So we rather evaluate it asymptotically, by the method of steepest descents

(cf. Bleistein 1984 ch. 7). Consider more generally

f (t) = FT–1 e– α ω–1/2

ωs
 = 1

2π
        e

tφ(ω)
ωs

 dω  , (D12)

where

φ(ω) = iω – α
t

 ω–1/2  . (D13)

Among the three critical points of the integrand,

ω1 = α
2t

2/3
 e–i π    ,    ω2 = α

2t
2/3

 ei π/3    and    ω3 = 0  , (D14)

only the two saddle points ω1 and ω2 contribute to the asymptotic expansion. The paths of

steepest descent through them stretch out from zero to infinity along the positive imaginary

axis (figure 12). Once the original integration path has been deformed, we find

f (t) ~ H(t) α
2t

1–2s
3   e

– 32 i  2α2 t 1/3
 – i 

1–4s
4  π + e

– 3
2

 2α2 t 1/3 e–i π/6 + i 
5–4s

12
 π

3πt
  . (D15)
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CAPTIONS

Table 1. Compared structures of classical wave fields and Boussinesq gravity wave fields.

The characteristics of the latter are attributable to their wavelength

λg = 2π
Nt

 r
sin θ

 .

Figure 1. Boussinesq internal waves radiated by a monochromatic point source oscillating

at frequency ω = N/2. Waves are confined on the characteristic cone of semi-

angle θ0 = arc cos (ω/N), along which energy propagates with group velocity cg.

Surfaces of constant phase are parallel to the cone, and move perpendicular to it

with phase velocity cφ.

Figure 2. Boussinesq internal waves radiated by an impulsive point source. The conical

surfaces of constant phase Φ = Ntcos θ = π/4 + nπ (n any integer), on which

the pressure and velocity fields are zero, are shown for Nt = 10π.

Figure 3. Wavenumber surface for non-Boussinesq internal waves of frequency ω = N/2.

The group velocity cg associated to a given wavevector k points along the

normal to this surface, out of the characteristic cone of semi-angle θ0 = arc cos

(ω/N).

Figure 4. Group velocity cg and phase velocity cφ of non-Boussinesq internal waves

generated by a monochromatic point source as a function of frequency ω, in a

direction making an angle θ = 60°with the vertical.

Figure 5. Coordinate system for internal wave radiation.

Figure 6. Branch cuts for the monochromatic Green’s function, and integration path for the

impulsive Green’s function.

Figure 7. Graphical determination of the frequencies ωs1 of gravity waves and ωs2 of

buoyancy oscillations, for propagation from a point source along a direction

inclined at θ = 60° to the vertical.

Figure 8. Regions for the validity of the Boussinesq approximation, for gravity (a torus of

radius 2Nt/β) and buoyancy (a cylinder with the same radius) waves.
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Figure 9. Points of contact T+ and T– of the uppermost and lowermost tangents from a

point r to the sphere.

Figure 10. Boussinesq internal wave field of a monochromatically pulsating sphere. Waves

are confined in regions III and V, bounded by characteristic cones of semi-angle

θ0 = arc cos (ω/N). There, coordinates σ± describe transverse distances, with

which the phase variates.

Figure 11. Boussinesq internal wave field of an impulsively pulsating sphere. Out of the

characteristic torus of radius Ntagravity waves, whose surfaces of constant phase

are conical (cf. figure 2), dominate. Inside the torus they give way to buoyancy

oscillations, whose phase is constant.

Figure 12. Original integration path (dotted line), and steepest descent contours (heavy

lines), for the asymptotic expansion of (D12). The saddle points ω1 and ω2 are

situated a distance (α/2t)2/3 from the origin ω3 = 0 which makes no contribution to

the expansion.

Internal wave generation. 1. Green’s function 5 8



TYPE  OF  WAVE acoustic electromagnetic gravity

SMALL  SOURCE a « λ a « λ r » Nt a sin θ
→ outside the characteristic torus

NEAR  ZONE
a « r « λ

     →incompressible fluid      

a « r « λ
→static fields

Nt « 1  and  r » a

→homogeneous fluid

FAR  ZONE
a « λ « r

→ radiation of 
acoustic waves

a « λ « r

→ radiation of 
     electromagnetic waves      

Nt » 1  and  r » Nt a sin θ
→ radiation of 
gravity waves

Table 1


