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Abstract. A representation is proposed for the small oscillations of bodies in unbounded
uniformly stratified Boussinesq fluids, in terms of a surface distribution of singularities. The
distribution satisfies an integral equation, expressing the continuity of normal velocity. The
equation is solved for a sphere and a circular cylinder; when these are rigid, the form of the
distribution is interpreted in terms of added mass.

In a stratified fluid, owing to the generation of internal waves by vertical motion (propa-
gating waves at frequencies below the buoyancy frequency, evanescent waves at frequencies
above it), added mass becomes anisotropic and frequency-dependent. It is only in the limit
of large frequencies that the coefficients of added mass in a homogeneous fluid, 1/2 for
the sphere and 1 for the circular cylinder, are recovered. Two definitions of added mass are
considered, based on the impulse of the fluid and on the pressure on the body, respectively.
In a homogeneous fluid they are equivalent; stratification makes them distinct, leading to
two different forms of added mass.

Two applications are considered: the wave power radiated by the forced oscillations
of a body; and the free oscillations of a body displaced from its equilibrium level then
released. A maximum of the wave power is observed at a practically constant fraction 0.8
of the buoyancy frequency, and its implications for the radiation of waves from regions of
random fluid motion are discussed.

1. Introduction

Owing to realization of the importance of internal tides in ocean dynamics1 and to
successful reproduction of these tides in the laboratory using oscillatory flow over
topography,2 the classical problemof thegenerationof internalwavesbyoscillating
objects is experiencing renewed interest. As a consequence, the objects used in
the laboratory have gained increasing sophistication, from classical oscillating
cylinders3–5 and spheres6 to innovative paddles.7 The present paper studies the
modelling of bodies oscillating with small amplitude in unbounded uniformly
stratified Boussinesq fluids, using a sphere and a circular cylinder as three- and
two-dimensional examples, respectively. For rigid bodies, the models are linked
with the modification of the added mass of the bodies by the stratification.
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2. Wave Generation

The problem and notations are illustrated in Fig. 1. In a fluid of density ρ0(z) at rest
and constant buoyancy frequency N = [−(g/ρ0)(dρ0/dz)]1/2, with z the upward
vertical coordinate and g the acceleration due to gravity, a body of volume V has
the distribution of velocity U(x)e−iωt imposed at its surface S. The motion of the
fluid is described in terms of a wave function χ ,8 satisfying the wave equation

µ
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@t2
∇2 + N2∇2h

∂
χ(x, t) = 0, (1)

with boundary condition
µ
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∂
χ(x, t) = Un(x)e−iωt for x ∈ S, (2)

where the subscript h denotes a horizontal projection and n the outward normal to
S. The disturbances in pressure p, velocity u and density ρ follow as

p = −ρ0
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All quantities depend on time through the factor e−iωt which is suppressed in the
following, so that @/@t ≡ −iω.
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Figure 1. Generation of waves by an oscillating object (left) and oblate spheroidal coordinates (right).

We replace the boundary forcing by a source term q(x) = σ (x)δS(x) in the
wave equation, distributing singularities with density σ along S, where δS is the
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Dirac delta function of support S. Convolution with the Green’s function8 of the
wave equation yields the wave function

χ(x) =
1

4π(ω2 − N2)1/2

I

S

σ (x0)
[ω2(x− x0)2 − N2(z − z0)2]1/2

d2S0, (4)

transforming the boundary condition into an integral equation for σ , namely

Un(x) = −
1

4π(ω2 − N2)1/2

µ
ω2

@

@n
− N2

@

@nh

∂

×
I

S

σ (x0)
[ω2(x− x0)2 − N2(z − z0)2]1/2

d2S0 for x ∈ S. (5)

One advantage of this procedure, introduced for lee waves9 and applied later to
monochromaticwaves,10,11 is that once the representationof the forcing is known it
is straightforward to incorporate additional effects into the analysis, such as viscos-
ity,12 unsteadiness and near field, as is required for comparison with experiment.13
Until now, for the two most popular internal wave generators, a rigid cylinder14–16
and a rigid sphere,6 people have resorted instead to solving first the steady inviscid
problem (1)–(2), then deducing the spectrum of the forcing from the solution, and
finally adding viscous effects.

2.1. Oscillating sphere

We consider first a sphere of radius a. For ω > N , stretching the coordinates
anisotropically according to

x =
N
ω
x?, y =

N
ω
y?, z =

N
(ω2 − N2)1/2

z?, (6)

transforms the kernel of the integral equation into the Poisson kernel 1/|x? − x0?|
and the sphere into an oblate spheroid, dictating the introduction of the appropriate
spheroidal coordinates (ξ, η,φ),17 defined by

x? = a cosh ξ sin η cosφ, y? = a cosh ξ sin η sinφ, z? = a sinh ξ cos η,

(7)

and illustrated in Fig. 1. The pseudo-radial coordinate ξ and the pseudo-angular
coordinate η are constant on confocal spheroids and hyperboloids, respectively.

On the sphere, ξ = ξ0 = arccosh(ω/N ) and η = θ with θ the colatitude.
Equation (5) reduces to a standard integral equation,

Ur (θ,φ) = −
a
4π

ω

N
@

@ξ

I

ξ 0=ξ0

σ (θ 0,φ0)

|x? − x0?|
d2≠ 0 at ξ = ξ0, (8)
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with d2≠ 0 = sin θ 0dθ 0dφ0 the elementary solid angle, and is solved by expansion
in spherical harmonics Ylm .18 We write

Ur (θ,φ) =
∞X

l=0

lX

m=−l
UlmYlm(θ,φ), (9)

and use19

a
|x? − x0?|

= 4iπ
∞X

l=0

lX

m=−l
(−1)m

(l − m)!
(l + m)!

× Plm(i sinh ξ<)Qlm(i sinh ξ>)Ylm(η,φ)Ylm(η0,φ0), (10)

where Plm and Qlm are associated Legendre functions, ξ< (ξ>) is the smaller
(larger) of ξ and ξ 0, and a bar ¯ denotes a complex conjugate. We obtain

σ (θ,φ) =
N2

ω2

∞X

l=0

lX

m=−l
(−1)m

(l + m)!
(l − m)!

Ulm
Ylm(θ,φ)

Plm(i sinh ξ0)Q0
lm(i sinh ξ0)

, (11)

and simultaneously

p(x) = ρ0Na
µ
1−

N2

ω2

∂1/2 ∞X

l=0

lX

m=−l
Ulm

Qlm(i sinh ξ)Ylm(η,φ)

Q0
lm(i sinh ξ0)

. (12)

The solution is then extended to frequencies 0 < ω < N by analytic continuation
onto the upper half of the complex ω-plane, in accordance with causality.20

When the sphere is rigid, only the dipolar terms, corresponding to l = 1,
contribute to the expansion. The equivalent source,

q(x) =
3
2
U? ·

x
a
δ(r − a), (13)

with r = |x|, is identical to that in a homogeneous fluid except for the replacement
of the actual velocity U by the virtual velocity U?, such that

U?
h =

4/3
1+ A

Uh, U ?
z =

2/3
1− A

Uz, (14)

with
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ω2

N2

"
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µ
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µ
N
ω
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, (15)

becoming, for 0 < ω < N ,

A(ω) =
ω2

N2

"

1−

µ
1−

ω2

N2

∂1/2
arccosh

µ
N
ω

∂
− i

π

2

µ
1−

ω2
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∂1/2#

. (16)

In the limit ω/N → ∞ the influence of the stratification vanishes, with A → 1/3
and U? → U.
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2.2. Oscillating circular cylinder

The case of a horizontal circular cylinder of radius a is treated in the same way,
using elliptical coordinates instead of spheroidal coordinates.21 Again, when the
cylinder is rigid, the equivalent source,

q(x) = 2U? ·
x
a
δ(r − a), (17)

is identical to that in a homogeneous fluid except for the replacement of U by U?,
such that

U ?
h =

1+ (1− N2/ω2)1/2

2
Uh, U ?

z =
1+ (1− N2/ω2)−1/2

2
Uz . (18)

By analytic continuation we have, for 0 < ω < N ,
µ
1−

N2

ω2

∂1/2
= i

µ
N2

ω2
− 1

∂1/2
, (19)

and in the limit ω/N → ∞ we verify that U? → U.

3. Added Mass

The replacementof the actual velocityUby thevirtual velocityU? is amanifestation
of a more general phenomenon: in a stratified fluid, the modification of the added
mass of oscillating rigid bodies owing to buoyancy. For irrotational flow of a
homogeneous fluid, two equivalent definitions of addedmass are used indifferently
in the literature, based on the impulse of the fluid and on the pressure on the body,
respectively. We consider them in turn.

3.1. Impulse-based definition

The first definition22,23 uses the fluid impulse I, related to the dipole strength D of
the body by

ρ0D = ρ0VU+ I, (20)

and representing the momentum which the body must communicate to the fluid to
generate the motion of this fluid from rest. Owing to the linearity of the equations
of motion, a linear relation exists between the fluid impulse and the velocity of the
body, of the form

Ii = ρ0VC(1)
i j U j , (21)
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yielding a first definition of the added mass coefficients C(1)
i j and allowing their

derivation from the distribution of singularities σ (x), through the equation

Di =
I

S
xiσ (x) d2S = V [δi j + C(1)

i j ]Uj , (22)

with δi j the Kronecker delta symbol.
In a stratified fluid, derivation of a Kirchhoff–Helmholtz integral equation24,25

from the wave equation, followed by multipolar expansion, implies that Eq. (20)
remains valid provided the fluid impulse is defined in terms of the wave function
as

I = ρ0

I

S

≥
ω2n− N2nh

¥
χ(x) d2S. (23)

From Eq. (22) we obtain for the sphere

C(1)
h =

1− A
1+ A

, C(1)
z =

A
1− A

, (24)

and for the circular cylinder

C(1)
h =

µ
1−

N2

ω2

∂1/2
, C(1)

z =

µ
1−

N2

ω2

∂−1/2

. (25)

The coefficients of added mass become complex and frequency-dependent. Their
variations are represented in Fig. 2, in modulus and argument. As ω/N → ∞ the
values in a homogeneous fluid, C∞ = 1/2 for the sphere and 1 for the cylinder,
are recovered.
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Figure 2. Impulse-based added mass coefficients of a sphere (red) and a circular cylinder (blue).
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3.2. Pressure-based definition

The second definition26,27 uses the hydrodynamic pressure force exerted by the
fluid on the body, given by

Fd = −
I

S
np(x) d2S. (26)

Again, owing to the linearity of the equations of motion, a linear relation exists
between this force and the acceleration of the body, of the form

Fdi = iρ0ωVC(2)
i j U j , (27)

yielding a second definition of the added mass coefficients C(2)
i j and allowing their

derivation from the distribution of hydrodynamic pressure p(x).
In a homogeneous fluid the two definitions are equivalent, since −Fd is the

force exerted by the body on the fluid so that Fd = iωI. In a stratified fluid the
existence of an additional force, buoyancy, breaks the equivalence. Using Eq. (3)
we obtain

Fd = iρ0ω(ω2 − N2)
I

S
nχ(x) d2S, (28)

and comparison with Eq. (23) shows that the two definitions (21) and (27) yield
different results. In particular, for the sphere and the circular cylinder we have

C(2)
h = C(1)

h , C(2)
z =

µ
1−

N2

ω2

∂
C(1)
z . (29)

The resulting expressions of C(2) agree with previous direct calculations.14,27
The equation of motion of the body under an external force Fe is28

−ρ0Vω2X = Fd − ρ0V N2Zez + Fe, (30)

for the position X of the centroid of the displaced fluid, such that U = −iωX,
relative to the equilibrium level Z = 0. The second term on the right-hand side
represents the buoyancy of the body, namely the combination of hydrostatic pres-
sure (Archimede’s force) and weight. Separating real and imaginary parts, the
equation may be recast as

Ω
−

ω2

N2
h
δi j + ReC(2)

i j

i
− i

ω

N

h ω

N
ImC(2)

i j

i
− δi3δ j3

æ
X j =

Fei
ρ0V N2

, (31)

validating the interpretation of ReC(2) as a coefficient of added mass in the usual
sense and (ω/N ) ImC(2) as a coefficient of damping. The variations of these
coefficients for the sphere and the cylinder are represented in Fig. 3, and have been
verified experimentally for horizontal oscillations.29–32
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Figure 3. Pressure-based added mass coefficients of a sphere (red) and a circular cylinder (blue).

4. Applications

4.1. Wave power

Knowledge of the source term equivalent to an oscillating body allows straight-
forward derivation of the power of the waves radiated away from the body, as
an integral of the source spectrum squared.8,33 Assuming fixed amplitude R and
inclination α of the oscillations to the vertical, so that X = R(sinα, 0, cosα), we
obtain for 0 < ω < N , for the sphere,

P =
π2

3
ρ0N3a3R2

ω3

N3

µ
1−

ω2

N2

∂1/2

×

"

2
ω2

N2
sin2 α

|1+ A|2
+

µ
1−

ω2

N2

∂
cos2 α

|1− A|2

#

, (32)

and for the circular cylinder,14

P =
π

2
ρ0N3a2R2

ω2

N2

µ
1−

ω2

N2

∂1/2
, (33)

while P = 0 for ω > N . The variations of P with ω are represented in Fig. 4, and
have been verified experimentally for horizontal oscillations.30,32 A maximum is
observed at ω0/N =

p
(2/3) ≈ 0.82 independent of α for the cylinder, and ω0/N

varying weakly with α, between 0.84 and 0.85, for the sphere.
A tentative extrapolation relates to wave emission by assemblies of randomly

moving fluid patches located in a region of spacewith fixed centre ofmass: for such
broadband excitation, if the patches are assumed to move in arbitrary directions
with approximately fixed excursion, then the waves radiated away from the region
are expected to have a power spectrum peaked at frequency ω0. Such spectra have
been observed experimentally for a two-dimensional mixed region released at its
equilibrium level34 (ω0/N = 0.8) or above it35 (ω0/N = 0.7), and numerically
during the decrease of three-dimensional turbulence36 (ω0/N = 0.5).
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Figure 4. Wave power from a sphere (red) and a circular cylinder (blue), normalized by P0 =
ρ0N3a3R2 for the sphere and ρ0N3a2R2 for the cylinder.

4.2. Buoyant release

The variations of the vertical coefficient of added mass with frequency are related
unequivocally30 to the spectrum Z(ω) =

R ∞
0 Z(t)eiωt dt of the free oscillations

Z(t) of a rigid body displaced a small distance |Z0| ø a from its equilibrium level
then released at time t = 0. This corresponds in Eq. (31) to the application of a
force Fez = ρ0V N2Z0 for t < 0 and 0 for t > 0, yielding

Z(ω)

Z0
=
i
ω

C(2)
z (ω) + 1

C(2)
z (ω) + 1− N2/ω2

. (34)

For the sphere and the circular cylinder we obtain by Fourier inversion

Z(t)
Z0

=
π

2
H−1(Nt),

Z(t)
Z0

= J0(Nt), (35)

respectively, where J∫ and H∫ are Bessel and Struve functions, consistently with
previous direct calculations and experimental measurements for the sphere.28 The
oscillations are represented in Fig. 5 together with their spectrum.
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Figure 5. Free oscillations of a sphere (red) and a circular cylinder (blue).
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When the initial displacement becomes comparable with the size of the body,
competition arises between viscous drag and wave drag. Ultimately, as |Z0| ¿ a,
viscosity takes over, as has been verified in the laboratory37 and in the field.38
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