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Lee waves from a sphere in a stratified flow
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Two asymptotic analyses of the generation of lee waves by horizontal flow at velocity
U of a stratified fluid of buoyancy frequency N past a sphere of radius a are presented,
for either weak or strong stratification, corresponding to either large or small internal
Froude number F = U/(Na), respectively. For F � 1, the fluid separates into two re-
gions radially: an inner region of scale a with three-dimensional irrotational flow unaf-
fected by the stratification, and an outer region of scale U/N with small-amplitude lee
waves generated by the O(1) vertical motion in the inner region. For F � 1, the fluid
separates into five layers vertically: from the lower dividing streamsurface situated at
a distance U/N above the bottom of the sphere to the upper dividing streamsurface
situated at a distance U/N below the top, there is a middle layer with two-dimensional
horizontal irrotational flow; from the upper dividing streamsurface to the top of the
sphere, and from the lower dividing streamsurface to the bottom, there are top and
bottom transition layers, respectively, with three-dimensional flow; above the top and
below the bottom, there are upper and lower layers, respectively, with small-amplitude
lee waves generated by the O(F ) vertical motion in the transition layers.

The waves are calculated where they have small amplitudes. The forcing is
represented by a source of mass: for F � 1, the surface distribution of singularities
equivalent to the sphere in three-dimensional irrotational flow; for F � 1, the
horizontal distribution of singularities equivalent, in the upper (resp. lower) layer,
to the flat cut-off obstacle made up of the top (resp. bottom) portion of the
sphere protruding above (resp. below) the upper (resp. lower) dividing streamsurface.
The analysis is validated by comparison of the theoretical wave drag with
existing experimental determinations. For F � 1, the drag coefficient decreases as
(ln F + 7/4 − γ)/(4F 4), with γ the Euler constant; for F � 1, it increases as (32

√
2)/

(15π)F 3/2. The waves have the crescent shape of the three-dimensional lee waves from
a dipole, modulated by interferences associated with the finite size of the forcing.
For strong stratification, the hydrostatic approximation is seen to produce correct
leading-order drag, but incorrect waves.

1. Introduction
The generation of internal gravity waves, called lee waves, by the horizontal

motion of a body in a density-stratified fluid, or equivalently by the horizontal flow
of a density-stratified fluid past an obstacle, is a problem of considerable geophysical
importance; see e.g. Wurtele, Sharman & Datta (1996). The present paper deals
with its simplest form: the uniform horizontal motion of a body in an unbounded
uniformly stratified Boussinesq fluid otherwise at rest, or equivalently the steady
flow, otherwise horizontal and without shear, of a semi-infinite uniformly stratified
Boussinesq fluid over an obstacle lying on a plane horizontal surface.
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This flow has been studied for over half a century. Early investigations, reviewed by
Miles (1969), have focused on two-dimensional obstacles. Later, attention has turned
gradually to three-dimensional obstacles, often considered within the hydrostatic
approximation, reviewed by Smith (1989b). To date, however, the analytical
description of the flow remains incomplete; in three dimensions, in particular, it is re-
stricted to obstacles that are either small or flat, or to motion that is either hydrostatic
or slow. We focus here on three-dimensional theory; for a comprehensive survey of
theory, experiment and simulation for a wide range of obstacles, stratifications and
incoming flows, the reader is referred to Baines (1995).

One of the most recent three-dimensional contributions is the analysis by Greenslade
(2000) of the measurements by Mason (1977) and Lofquist & Purtell (1984) of the
drag on a sphere in a stratified flow. With N the buoyancy frequency, ν the kinematic
viscosity, U the velocity of the flow and a the radius of the sphere, the relevant
similarity parameters are the internal Froude number F = U/(Na) and the Reynolds
number Re =2Ua/ν.

Experimentally, the drag coefficient CD(Re, F ) has been separated by Lofquist &
Purtell (1984) into two contributions: one, CD(Re, ∞), without the stratification, and
the other, �CD(Re, F ), specific to it, so that

CD(Re, F ) = CD(Re, ∞) + �CD(Re, F ). (1.1)

For the ranges of values of Re considered, both contributions turn out to be
effectively independent of Re: the former has been verified by Mason (1977), for
1600 <Re < 12 000, to vary only weakly, between 0.4 and 0.6, with Re, as is normal
when the wake of the sphere is turbulent (see e.g. Batchelor 1967, § 5.11; Landau &
Lifshitz 1987, § 45); and the latter has been verified by Lofquist & Purtell, for
150 <Re < 5000, to exhibit no effect of Re. Hence, to a good approximation, we may
write

CD(F ) = CD(∞) + �CD(F ), (1.2)

with CD(∞) a constant and �CD(F ) an inviscid stratified drag coefficient. At Re = 200,
the numerical study of Hanazaki (1988) has confirmed that friction plays a negligible
role in �CD(F ) compared with pressure. Accordingly, viscosity will be neglected in
the following.

Theoretically, the drag coefficient CD(F ) has been separated by Greenslade (2000)
into two contributions, Cwaves

D (F ) associated with wave generation and Cwake
D (F ) with

wake formation, so that

CD(F ) = Cwaves
D (F ) + Cwake

D (F ), (1.3)

implying

�CD(F ) = Cwaves
D (F ) + Cwake

D (F ) − CD(∞). (1.4)

Greenslade has plotted in this form the data of Mason (1977) and Lofquist &
Purtell (1984), and compared them with the output of two theories: for large F , the
combination of a prediction of the wave drag by Gorodtsov & Teodorovich (1982)
and of the assumption of weak variations of the wake drag with F as F → ∞, yielding

Cwaves
D (F ) ∼ ln F + 7/4 − γ

4F 4
, Cwake

D (F ) ∼ CD(∞), (1.5a, b)
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Figure 1. Experimental and numerical determinations of the stratified drag coefficient �CD

of a sphere, or plane-mounted hemisphere, as a function of the internal Froude number F
(adapted from Greenslade 2000, by kind permission of the author). The data points of Mason
(1977) (+), Lofquist & Purtell (1984) (�), Hanazaki (1988) (�), Shishkina (1996) (�), Vosper
et al. (1999) for the large hemisphere HS1 (�) and the small hemisphere HS2 (�) are combined
with continuous lines representing the models (1.5) for large F and (1.6) for small F . The
vertical error bars correspond to the standard errors plotted by Mason, to the error of 0.08
mentioned by Shishkina and to the accuracy of 10 % mentioned by Vosper et al., in all three
cases for CD(F ) and CD(∞) independently. The discrepancy at F smaller than, say, 0.4 between
the measurements for HS1 on one hand, and HS2 on the other hand, is attributed by Vosper
(2000) to the finite width of the experimental tank used by Vosper et al.: at small F , the flow
past the hemisphere is mostly horizontal and affected for HS1, due to its size, by the nearby
sidewalls. This phenomenon, called blockage, must not be mistaken for that, called blocking,
discussed in § 2.1.

with γ ≈ 0.577 the Euler constant; for small F , a combination of dimensional and
geometrical considerations, yielding

Cwaves
D (F ) ∼ BF 3/2, Cwake

D (F ) ∼ CF 1/2
(
1 − 5

4
F

)
, (1.6a, b)

with B and C two constants obtained from statistical fit to the data. The comparison
is reproduced in figure 1, where the experimental data of Mason and Lofquist &
Purtell are complemented with those, experimental, of Shishkina (1996) and Vosper
et al. (1999), and those, numerical, of Hanazaki (1988). The details of the fit are given
in table 1. The data all appear consistent with one another and with the theory, except
for Hanazaki, probably because of the low value of Re, and for the large hemisphere
HS1 of Vosper et al., probably because of the small relative width of the experimental
tank.
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Data set Range of Re CD(∞) B C Points

Mason 1600 < Re < 12 000 0.51 0.75 ± 0.34 3.34 ± 0.10 5
Lofquist & Purtell 150 < Re < 5000 0.51 0.87 ± 0.20 3.32 ± 0.06 60
Hanazaki Re = 200 0.81 1.54 ± 0.39 3.02 ± 0.12 5
Shishkina 800 < Re < 5000 0.51 0.93 ± ∞ 3.45 ± ∞ 2
Vosper et al. 16 000 < Re < 78 000 0.43 0.71 ± 0.50 2.74 ± 0.16 7

Table 1. Application of Greenslade’s (2000) model (1.6) of the drag coefficient CD of a sphere
at small F to the experimental and numerical data of Mason (1977), Lofquist & Purtell (1984),
Hanazaki (1988), Shishkina (1996) and Vosper et al. (1999), represented in figure 1; for the
last, only the small hemisphere HS2 has been taken into account. The constants B and C
follow from a least-square fit of [�CD(F ) + CD(∞)]/F 1/2 as a linear function of F to each set
of data within the range 0.2 < F < 0.8. The values and associated errors are determined based
on the estimates and standard errors of the fit, respectively; in each case the number of data
points involved in the fit is indicated. For the constant CD(∞), the values given by Mason
and Hanazaki have been used directly; following Greenslade, the values omitted by Lofquist
& Purtell and Shishkina have been replaced by that given by Mason; and the mean of the
values, ranging between 0.32 and 0.50, in figure 2(b) of Vosper et al. has been taken.

The present paper uses the sphere as a paradigm of three-dimensional obstacles, and
Greenslade’s (2000) analysis as a testbed for models of three-dimensional generation
of lee waves. Two such models are proposed, appropriate at large and small F , respect-
ively; they are applied to calculate both the drag and the waves. For the drag, only
the wave contribution Cwaves

D is considered, denoted CD for short; it must, however, be
kept in mind that, according to (1.6), the wake contribution Cwake

D is dominant at small
F . For the waves, only the lee waves generated by the displacement of the fluid by the
sphere alone are considered, and not the so-called ‘random’ internal waves generated
by its wake; it must, however, be kept in mind that, according to e.g. Bonneton,
Chomaz & Hopfinger (1993), the random waves are dominant at, say, F � 4.

The paper is organized as follows. Section 2 reviews the existing theories of
the generation of lee waves, first in two dimensions and then in three dimensions.
Special attention is paid to re-organizing and systemizing all the approximations and
their parameter regimes of validity. Based on the review, § 3 relates, at large F , the
representation of the sphere underlying (1.5a) to the asymptotic structure of the flow.
At small F , a similar analysis of this structure, governed by the presence of dividing
streamsurfaces, leads to a new and original representation of the sphere, in a regime
for which no such representation was previously available.

Section 4 presents the equations of motion briefly. Based on them, § 5 calculates the
wave drag in each regime, applying Mellin–Barnes integration to the evaluation of the
integrals involved (see e.g. Paris & Kaminski 2001, ch. 5). As F → ∞ the result (1.5a),
given by Gorodtsov & Teodorovich (1982) without explanation, is recovered and
extended; as F → 0 the result (1.6a) is recovered and the value of the constant B is
predicted analytically as (32

√
2)/(15π) ≈ 0.96, to be compared with its determinations

in table 1. In this way the two representations of the sphere are validated. Section 6
uses them for the calculation of the waves in the far field, by a generalization of the
approach of Voisin (1994) for point sources. The results are applied to two particular
values of F , F = 1 deemed ‘large’ and F = 1/4 deemed ‘small’, for illustration and
with no implications, at this stage, for the domains of validity of the representations.

Section 7 evaluates the order of magnitude of the motion in each region of the
fluid, at both large and small F . This legitimates in particular why, at small F , in
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contradistinction to conventional thinking, the linear approximation can be applied to
the waves but not the hydrostatic approximation. Section 8 summarizes the theoretical
results of the paper, discusses their relevance in view of the available experimental
and numerical results, and outlines future directions of research for making the theory
quantitative.

2. Existing theories
2.1. Two-dimensional theories

For flow at the velocity U of a fluid of buoyancy frequency N over a plane-mounted
two-dimensional obstacle of height h and length 2�, the appropriate similarity
parameters are the three numbers

Fh = F =
U

Nh
, ε =

h

�
, F� = εF =

U

N�
, (2.1)

only two of which are independent. The internal Froude number F is the square
root of the ratio of the kinetic energy, ρ0U

2/2 per unit volume, of the incoming
flow to the potential energy, ρ0N

2h2/2 per unit volume, gained by the fluid as it
rises from the base to the summit of the obstacle, with ρ0 the density at rest. This
number represents, accordingly, an estimate of the ratio of inertial to buoyancy forces
in the flow. The other parameters are the aspect ratio ε, and the ratio εF of the
scale U/N of buoyancy-induced motion to the horizontal scale � of the obstacle. In
this sense, F� = εF may be viewed as a horizontal internal Froude number, based
on obstacle half-length, and Fh = F as a vertical internal Froude number, based on
obstacle height.

On the assumptions of steady motion and no modification of the incoming flow
at infinity upstream, a linear equation, derived by Long (1953), governs the finite-
amplitude motion of the fluid. In a system of coordinates (x1, z) relative to the
obstacle, with the x1-axis directed horizontally downstream and the z-axis vertically
upwards, Long’s equation is written(

∂2

∂x2
1

+
∂2

∂z2
+

N2

U 2

)
ζ = 0, (2.2)

for the vertical displacement ζ (x1, z). It is accompanied, for an obstacle of elevation
z = f (x1) above the horizontal plane z = 0, by the nonlinear boundary condition

ζ [x1, f (x1)] = f (x1). (2.3)

This boundary-value problem has been solved exactly in a few cases, including
vertical barriers (Miles 1968; Janowitz 1973), and semi-circular (Kozhevnikov 1963,
1968; Miles & Huppert 1968; Aksenov, Gorodtsov & Sturova 1986), semi-elliptical
(Huppert & Miles 1969) and bell-shaped (Laprise & Peltier 1989) obstacles. For
the most part, however, analytical progress has relied on approximations (Miles &
Huppert 1969), associated with limiting values of Fh, F� and ε and summarized in
figure 2; see also Miles (1969) and Baines (1995, § § 5.2–3).

(i) For F� → ∞ with ε fixed, so that Fh → ∞, a separation arises between the
small scales h and � of the obstacle on one hand, and the large scale U/N of the
stratification on the other hand. Near the obstacle, that is in an inner region of scale
�, the motion is unaffected by the stratification and hence irrotational. Far from the
obstacle, that is in an outer region of scale U/N , the motion is made up of small-
amplitude lee waves. Matching, as did Baines & Grimshaw (1979) by the method of
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Figure 2. Approximations for two-dimensional flow at velocity U of a stratified fluid of
buoyancy frequency N over a plane-mounted obstacle of height h and half-length �, in terms
of the vertical internal Froude number Fh = U/(Nh) and horizontal internal Froude number
F� = U/(N�), with ε = h/� the aspect ratio (inspired by figure 2 of Baines & Grimshaw 1979,
considering cases (i) and (ii) and using coordinates 1/Fh and ε). For both Fh � 1 and Fh � 1
the problem is linear, though the linearization involves a different state of reference in each
case.

matched asymptotic expansions, the two types of motion in an intermediate region
� � r1 � U/N , with r1 the distance from the obstacle, implies that the representation
of the obstacle valid as r1 � � in irrotational flow may be taken as the source term
for the waves. With A=

∫
f (x1) dx1 the area of the obstacle, ρ0A� its added mass

(per unit length in the spanwise direction) in the absence of stratification and δ(x)
the Dirac delta function, this representation is the dipole

q(x1, z) = 2U (A + A�)
∂

∂x1

δ(x1)δ(z), (2.4)

to appear in the equation of continuity as a source of mass releasing the volume q

of fluid per unit volume per unit time; see e.g. Batchelor (1967, § 6.4), Lighthill (1986,
§ 8.3) or Landau & Lifshitz (1987, § 11). This approximation, that we shall call small
obstacle, has also been called Rayleigh scattering in the literature, by analogy with the
approximation of the same name in electrodynamics; see e.g. Jackson (1999, § 10.1)
or Landau, Lifshitz & Pitaevskii (1984, § 92). The factor 2 in (2.4) and in similar
formulae to follow is associated with the reflection at the rigid boundary z = 0, and
corresponds to the addition of the image of the obstacle through this boundary.
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(ii) For ε → 0 with F� fixed, so that Fh → ∞, the obstacle z = f (x1) is a small
perturbation to the plane horizontal surface z = 0. The boundary condition (2.3) may
be linearized, to become

ζ (x1, 0) = f (x1), (2.5)

which is equivalent to the representation of the obstacle as a singular source term

q(x1, z) = 2U
∂

∂x1

f (x1)δ(z). (2.6)

This approximation, that we shall call flat obstacle by analogy with the slender-body
approximation of aeronautics and naval hydrodynamics (see e.g. Batchelor 1967,
§ 6.9), has also been called planar or linearized in the literature.

(iii) For F� → 0 with Fh fixed, so that ε → 0, the streamwise variations of the motion
occur on a scale � long compared with that, U/N , associated with the stratification.
The hydrostatic approximation ∂/∂x1 � N/U applies, simplifying Long’s equation
(2.2) to (

∂2

∂z2
+

N2

U 2

)
ζ = 0, (2.7)

and turning the boundary condition (2.3) into an integral equation of Hilbert type,
derived and solved independently by Miles & Huppert (1969) and Lilly & Klemp
(1979).

All three approximations yield compatible results in their common areas of validity:
for h � � � U/N , namely 1 � F� � Fh, the obstacle is both small and flat, and both
source terms (2.4) and (2.6) reduce to q(x1, z) = 2UAδ′(x1)δ(z), since A� � A for a flat
obstacle; similarly, for h � U/N � �, namely F� � 1 � Fh, the obstacle is flat and the
motion hydrostatic, and the combination of the two simplifications (2.5) and (2.7)
yields the linear hydrostatic solution of Drazin & Su (1975).

However, both laboratory experiments and numerical simulations have revealed
that the two basic assumptions of Long’s model, namely steady motion and no
upstream influence, become erroneous at sufficiently small Fh < 1; see e.g. Baines
(1995, § § 5.1 and 5.4).

Firstly, when the waves become so steep than the isopycnal lines, or lines of
constant density, overturn, then breaking occurs and the motion ceases to be steady.
To deal with this, Kantzios & Akylas (1993) and Prasad, Ramirez & Akylas (1996)
have developed a generalization of Long’s theory, appropriate for case (iii), based on
the hydrostatic approximation but allowing weak unsteadiness and weak upstream
influence. In this way, the realizability of Long’s steady state has been assessed.

Secondly, fluid that has not enough kinetic energy to flow over the obstacle piles
up in front of it, forming a region of stagnant fluid extending to infinity upstream;
see e.g. Baines (1987). This phenomenon, known as upstream blocking, is attributable
to the propagation upstream of internal waves, called columnar disturbances, of zero
frequency and group velocity horizontal and larger than the incoming velocity; see
e.g. Lighthill (1978, § 4.12). To deal with this situation, a fourth approximation has
been introduced.

(iv) For Fh → 0 with ε fixed, so that F� → 0, the incoming flow is slow and generates
motion that is itself slow, allowing the linearization of the equations of motion around
the state of rest of the fluid. For a semi-circular obstacle of radius a =h = �, at large
time t , such that Nt � 1, after impulsive start-up at time t = 0, Bretherton (1967) and
Krishna (1968) have obtained a superposition of two components: a steady horizontal
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blocked flow

u1 = U
z

(z2 − a2)1/2
, w = 0 (z > a), (2.8a)

u1 = 0, w = 0 (0 < z < a), (2.8b)

where u1 = (u1, w) is the velocity of the fluid, together with transient waves generated
by the start-up. This approximation, that we shall call slow motion, fails in two
respects: no steady lee waves are obtained, only transient internal waves and steady
columnar disturbances; and the velocity field of these disturbances is singular at the
level z = a of the summit of the obstacle.

2.2. Three-dimensional theories

In three dimensions, none of the preceding finite-amplitude approaches holds any
longer. As remarked by Drazin (1961), Yih (1967) and Zeytounian (1969), the same
assumptions that led to Long’s linear equation (2.2) in two dimensions lead to a
nonlinear equation in three dimensions; see also Miles (1969) and Baines (1995,
pp. 379–380). And the alternative nonlinear hydrostatic theory of Kantzios & Akylas
(1993) can only be generalized to steady motion over quasi-two-dimensional obstacles
(Akylas & Davis 2001), of much larger spanwise width than streamwise length.
Hence, for fully three-dimensional obstacles, of comparable width and length, all
existing approaches assume small amplitudes. With � the horizontal scale of the
obstacle and h its vertical scale, two situations must be separated, as pioneered by
Drazin (1961): weak stratification, corresponding to Fh � 1, and strong stratification,
corresponding to Fh � 1.

For weak stratification, the assumption Fh � 1 allows, for the waves, the equations
of motion to be linearized around the state of horizontal flow of the fluid at velocity
U . With y the spanwise coordinate, the resulting equation of propagation is[

∂2

∂x2
1

(
∂2

∂x2
1

+
∂2

∂y2
+

∂2

∂z2

)
+

N2

U 2

(
∂2

∂x2
1

+
∂2

∂y2

)]
ζ = 0. (2.9)

The boundary condition, for an obstacle of elevation z = f (x1, y) above the horizontal
plane z = 0, remains nonlinear and given by

ζ [x1, y, f (x1, y)] = f (x1, y). (2.10)

As in two dimensions, different approximations, associated with different ranges of
values of F�, have been developed for the solution of this boundary-value problem;
compare with figure 2.

For F� � 1, approximation (i) is relevant: the obstacle is small and may be
represented, in the outer region of scale U/N where the waves are of small amplitude
and governed by (2.9), by the dipole

q(x1, y, z) = 2U (V + V�)
∂

∂x1

δ(x1)δ(y)δ(z), (2.11)

with V =
∫∫

f (x1, y) dx1 dy the volume of the obstacle and ρ0V� its added mass in
the absence of stratification. This approximation has been used by Wurtele (1957),
Crapper (1959), Wu (1965), Miles (1971), Sturova (1974, 1978), Dokuchaev & Dolina
(1977), Makarov & Chashechkin (1981, 1982), Janowitz (1984) and Voisin (1994); see
also Baines (1995, § 6.1.3).
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For F� = O(1), approximation (ii) is relevant: the obstacle is flat and the boundary
condition (2.10) may be linearized in the form

ζ (x1, y, 0) = f (x1, y), (2.12)

equivalent to the representation of the obstacle as a singular source term

q(x1, y, z) = 2U
∂

∂x1

f (x1, y)δ(z). (2.13)

This approximation has been applied by Scorer (1956), Crapper (1959, 1962) and
Umeki & Kambe (1989) to various bell-shaped obstacles, and by Janowitz (1984) to
an obstacle of arbitrary (flat) shape; see also Baines (1995, § 6.1.3).

For F� � 1, both approximations (ii) and (iii) are relevant: the obstacle is flat so
that the boundary condition (2.10) simplifies to (2.12), and the motion is hydrostatic
so that the equation of propagation (2.9) simplifies to[

∂2

∂x2
1

∂2

∂z2
+

N2

U 2

(
∂2

∂x2
1

+
∂2

∂y2

)]
ζ = 0. (2.14)

This linear hydrostatic approximation has been applied by Blumen & McGregor
(1976), Smith (1980) and Phillips (1984) to various bell-shaped obstacles; see also
Baines (1995, § § 6.1.4–5). In order to enlarge its area of validity, Smith (1988) later
reformulated the problem in isosteric coordinates, namely with the specific volume
α as the vertical coordinate; see also Smith (1989b) and Baines (1995, § 6.4). The
surface z = f (x1, y) of the obstacle being, for large enough Fh, an isopleth of α, the
boundary condition (2.10) becomes exactly linear, without requiring the obstacle to
be flat; one approximation remains, though, namely the small-amplitude long-wave
approximation associated with the linear hydrostatic equation of propagation (2.14).

For strong stratification, the assumption Fh � 1 allows the equations of motion to be
linearized around the state of rest of the fluid: the motion is slow, and approximation
(iv) is relevant. For a hemispherical obstacle of radius a =h = �, at large time t , such
that Nt � 1, after impulsive start-up at time t =0, Grimshaw (1969) and Sarma &
Krishna (1972) have obtained a superposition of two components: a steady horizontal
irrotational flow

φh1
= Ux1, w = 0 (z > a), (2.15a)

φh1
= Ux1

(
1 +

a2 − z2

x2
1 + y2

)
, w = 0 (0 < z < a), (2.15b)

where u1 = (∂φh1
/∂x1, ∂φh1

/∂y, w) is the velocity of the fluid, together with tran-
sient waves generated by the start-up. The same approach has been applied by
Vladimirov & Il’in (1991) to semi-ellipsoidal obstacles. The first component, a
columnar disturbance, is identical, for the hemisphere, to the leading-order solution
of Drazin (1961) and Brighton (1978), obtained by looking for a steady solution of
the nonlinear equations of motion as an expansion in powers of F 2; see also Baines
(1995, § 6.7.1). Its nature, a horizontal flow, is associated with the fact that the fluid,
not having enough kinetic energy to flow over the obstacle, flows around it.

It appears, however, that none of the preceding approaches is fully satisfactory:
the small-obstacle approximation (i) has been noted by Miles (1971) and Janowitz
(1984) to yield singular velocities along the x1-axis downstream, and by Gorodtsov
& Teodorovich (1980, 1981) to yield infinite wave drag; neither the flat-obstacle
approximation (ii) nor its combination with the hydrostatic approximation (iii) allows
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the consideration of bluff obstacles; and the slow-motion approximation (iv) has been
noted by Drazin (1961) to produce a steady columnar disturbance singular at the
level z = h of the summit of the obstacle, and no steady lee waves.

3. Representation of the forcing
In order to address these issues, we consider a sphere of radius a moving horizontally

at the velocity U in an unbounded stratified fluid of buoyancy frequency N . A system
of coordinates (x1, y, z) relative to the sphere is used, with origin O1 at its centre, the
x1-axis directed opposite to its motion and the z-axis vertically upwards. The position
vector is x1 = (x1, y, z), with r1 = |x1| the radial distance. A subscript h indicates a
horizontal projection, yielding xh1

= (x1, y, 0) for the position and rh1
= |xh1

| for the
distance.

The classical representation of a sphere as a source of lee waves, justified in theory
for large internal Froude number F = U/(Na), corresponding to region (i) of figure 2,
but used in practice for any F , is the dipole (2.11) with the factor 2, corresponding to
a plane-mounted obstacle, omitted. With V = 4πa3/3 the volume of the sphere and
V�/V = 1/2 its added mass coefficient in a homogeneous fluid (see e.g. Batchelor 1967,
§ 6.8; Lighthill 1986, § 8.3; Landau & Lifshitz 1987, § 11), the dipole is written

q(x1) = 2πa3U
∂

∂x1

δ(x1)δ(y)δ(z), (3.1)

and has the spectrum

q(k) = 2iπa3Uk, (3.2)

with k = (k, l, m) the wavenumber vector. Hereinafter, for any function g of three
space coordinates x, y, z and one time variable t , Fourier transforms are defined by

g(k, ω) =

∫
g(x, t) exp[i(ωt − k · x)] d3x dt, (3.3a)

g(x, t) =
1

(2π)4

∫
g(k, ω) exp[i(k · x − ωt)] d3k dω, (3.3b)

and similarly when fewer coordinates or variable are involved.
Unfortunately, the linear growth of the spectrum (3.2) with k induces an algebraic

divergence of the wave amplitude on the x1-axis downstream (Miles 1971; Janowitz
1984), and a logarithmic divergence of the wave drag (Gorodtsov & Teodorovich
1980, 1981). Clearly, a more elaborate representation is required. Based on visual
examination of the flow, Makarov & Chashechkin (1981, 1982) and Chashechkin
(1989) have adopted a heuristic approach, modelling the sphere as a collection of
sources and sinks, each with Gaussian spatial delocalization; in each particular case,
the location, strength and size of the sources and sinks are fixed by comparison
with experiment. We propose instead a predictive approach, based on asymptotic
analysis of the structure of the flow. As anticipated by Drazin (1961), two types
of stratification must be separated: weak stratification, corresponding to F � 1, and
strong stratification, corresponding to F � 1.

3.1. Weak stratification

For F � 1, the representation of a moving body, of characteristic radius a, as a source
of lee waves follows from the matching between an inner region of scale a, where
the flow is to leading order irrotational and negligibly affected by the stratification,
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Figure 3. Streamlines for weakly stratified flow, at F � 1, past a sphere. The flow is represented
to O(1) in the inner region. At infinity upstream, the thick lines originate from the levels of
the top and bottom of the sphere.

and an outer region of scale U/N , where lee waves propagate with small amplitudes.
In two dimensions, this process has been suggested by Miles & Huppert (1969)
and implemented by Baines & Grimshaw (1979); in three dimensions, it has been
suggested by Miles (1971) and Murdock (1977) but remains to be implemented. All
other investigations so far have considered either region in isolation.

The problem in the inner region has been formulated by Drazin (1961). To leading
order, the flow is the O(1) three-dimensional irrotational flow of a homogeneous fluid.
For a sphere it is characterized, relative to the sphere, by the velocity potential

φ1 = Ux1

(
1 +

1

2

a3

r3
1

)
, (3.4)

the velocity u1 = (∂/∂x1, ∂/∂y, ∂/∂z)φ1 and the streamlines represented in figure 3;
see e.g. Batchelor (1967, § § 2.9 and 6.8), Lighthill (1986, § 7.5) or Landau & Lifshitz
(1987, § 10). To next order, the stratification may have both buoyancy and inertial
effects, so that the Boussinesq approximation is no longer valid; the buoyancy effect
is O(1/F 2) and the inertial effect O(N2a/g), with g the acceleration due to gravity.
This next-order flow has been calculated by Hawthorne & Martin (1955) for a sphere,
taking both effects into account, by Murdock (1977) for a Rankine ovoid, retaining
only the buoyancy effect, and by Eames & Hunt (1997) and Palierne (1999) for a
wider range of bodies, retaining only the inertial effect.

In the outer region, lee waves are observed. Physically, their source is the O(1)
vertical motion in the inner region. Mathematically, the representation of this source
follows from matching, in an intermediate region a � r1 � U/N , to the inner region.
To leading order, this procedure is usually thought to yield, as the source of the
waves, the singularity that creates the far-field limit, as r1 � a, of the irrotational
flow in the inner region (Miles 1971); namely the dipole (2.11), becoming (3.1) for
the sphere (see e.g. Batchelor 1967, § § 2.9 and 6.4; Lighthill 1986, § § 8.1–3; Landau &
Lifshitz 1987, § 11).

To avoid the associated divergence, Gorodtsov & Teodorovich (1982) have proposed
using instead the distribution of singularities that creates exactly the same irrotational
flow as the body in a homogeneous fluid; namely the distribution, located at the
surface of the body and determined from the condition of fixed normal velocity at
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this surface, given for the sphere by

q(x1) = −3

2
U

x1

a
δ(r1 − a), (3.5)

and having the spectrum

q(k) = 6iπa2U
k

κ
j1(κa), (3.6)

with κ = |k| and where jn(x) and Jν(x) are the spherical and cylindrical Bessel functions
of the first kind, respectively, so that j1(x) = [π/(2x)]1/2J3/2(x) = (sin x)/x2 − (cos x)/x.
We interpret this approximation as the use, as the source of the waves, of the
distribution of singularities that creates the whole of the irrotational flow in the inner
region, for all r1/a = O(1). At large wavelength, namely for κa → 0, this source has the
same spectrum (3.2) as the dipole, thereby producing the same far-field inner flow; at
small wavelength, namely for κa → ∞, the spectrum (3.6) vanishes, thereby avoiding
the divergence of the outer waves. This is the model that we shall use for F � 1.

So far, the assumption of free slip at the surface of the body has been implicit. In
the atmosphere, for flow over a topography of height h comparable with the thickness
of the viscous boundary layer at the ground, the assumption of no slip may be more
appropriate; see e.g. Baines (1995, pp. 224–226). A similar separation takes place, for
Fh � 1, between a lower layer with negligible effect of the stratification and an upper
layer with small-amplitude lee waves. Bell-shaped topography has been considered
in this way by Sykes (1978), for laminar flow, and by Hunt & Richards (1984) and
Hunt, Richards & Brighton (1988), for turbulent flow.

3.2. Strong stratification

For F � 1, vertical motion is inhibited by the stratification. To leading order, the
flow is O(1) and purely horizontal, independent in each horizontal plane. Therefore,
either above or below a moving body the fluid stays at rest, while at the level of the
body a two-dimensional irrotational flow is observed, around each horizontal section
of the body. For a sphere this flow has been given, relative to the sphere, by (2.15)
in the half-space z > 0, and is symmetrical with respect to the plane z = 0. To next
order, O(F 2) vertical motion takes place, characterized for the sphere by the vertical
displacement

ζ = 0 (|z| > a), (3.7a)

ζ = 2aF 2
az

(
x2

1 − y2 + z2 − a2
)

(
x2

1 + y2
)2

(|z| <a), (3.7b)

and the isopycnal lines represented in figure 4.
Unfortunately, this model, introduced by Drazin (1961) and Brighton (1978), fails in

two respects: first, at the levels of the top and bottom of the body, both the horizontal
velocity and the vertical displacement diverge at the body and are discontinuous in the
fluid; secondly, no steady lee waves are obtained, only steady columnar disturbances,
together with, for impulsive start-up, transient waves calculated by Grimshaw (1969)
and Sarma & Krishna (1972) for a sphere.

Both failures are manifestations of the singular nature of the small-F expansion:
at small but finite F , as remarked by Drazin (1961), transition layers are formed in
the fluid, with O(F ) thickness, at the levels of the top and bottom of the body; there,
O(F ) vertical motion takes place, producing lee waves which propagate away into the
fluid. Associated with the mathematical singularity is a physical reality, the existence
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Figure 4. Isopycnals for Drazin’s (1961) model of strongly stratified flow, at F � 1, past a
sphere. The flow, which to O(1) is purely horizontal, is represented to O(F 2). The isopycnals
are drawn in the vertical plane y = 0 and on the sphere surface. At infinity upstream, the thick
lines originate from the levels of the top and bottom of the sphere. For definiteness the value
F = 0.1 is used.

of the so-called dividing streamlines, more accurately streamsurfaces, each of which
separates two layers of fluid: one, where the flow is horizontal and around the body,
and the other, where the flow is three-dimensional and either over or under the body.

This concept, introduced by Sheppard (1956), is best presented for the flow at
velocity U over an obstacle of height h and half-length � lying on a plane horizontal
surface z = 0, with F = U/(Nh) the internal Froude number. The picture of Sheppard
is quasi-static and considers only the conversion of the kinetic energy, ρ0U

2/2 per
unit volume, of a fluid parcel in the incoming flow to the potential energy, ρ0N

2ζ 2/2
per unit volume, gained by this parcel as it rises by a height ζ . When F < 1, only
those parcels originating within a vertical distance U/N below the summit are able
to flow over the obstacle, the other parcels flowing around it. Accordingly, the
fluid is divided into three horizontal layers: for 0 <z < (1 − F )h, a lower layer with
two-dimensional horizontal irrotational flow; for z >h, an upper layer where the
incoming flow is unaffected by the presence of the obstacle; and in between, for
(1 − F )h < z < h, a summit layer, corresponding to Drazin’s (1961) transition layer,
with three-dimensional flow. The dividing streamsurface is identified as the plane
separating the lower and summit layers, and the prediction z = (1−F )h of its position
is usually called Sheppard’s criterion.

The extensive literature on strongly stratified flow has confirmed the qualitative
value of this criterion; see e.g. Baines (1995, § § 6.6 and 6.7.3). Objections, of either
theoretical (Smith 1989a), experimental (Baines & Smith 1993) or numerical (Smith &
Grøn̊as 1993) nature, have been raised to its quantitative value; they are associated
with the dynamic role of the pressure, which the model neglects, a role that is
increasingly large as F increases. However, this quantitative value has been confirmed
at F � 0.1 for bell-shaped obstacles by the experiments of Brighton (1978), Hunt &
Snyder (1980), Snyder et al. (1985) and Kadri et al. (1996), and by the numerical
simulations of Smolarkiewicz & Rotunno (1989, 1990), Suzuki & Kuwahara (1992)
and Miranda & James (1992); at F � 0.3 for a triangular ridge of finite width by
the experiments of Castro, Snyder & Marsh (1983); at F � 0.4 for a sphere by the
experiments of Sysoeva & Chashechkin (1988), Chomaz et al. (1992), Lin et al. (1992),
Chomaz, Bonneton & Hopfinger (1993) and Vosper et al. (1999), and by the numerical
simulations of Hanazaki (1988). It has also been verified in field experiments by Rowe
et al. (1981), Ryan & Lamb (1984), Egan (1984) and Spangler (1987).
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The construction of a singular mathematical model of the flow, building upon the
regular model of Drazin (1961) and Brighton (1978) and accounting for the existence
of the dividing streamsurface, has been initiated by Greenslade (1992, 1994) and Hunt
et al. (1997). Lee waves are generated by the vertical motion in the summit layer and
propagate, with small amplitudes, in the upper layer. In the lower layer, the flow,
given for a hemisphere by (2.15b), is identical, for an obstacle of revolution of vertical
axis and horizontal radius b(z) at the level z, to that from a distribution of dipoles

q(x1) = 2πb2(z)U
∂

∂x1

δ(x1)δ(y)H (h − z), (3.8)

located along the axis of the obstacle and of strength proportional to the area πb2(z)
of its horizontal section; H (x) denotes the Heaviside step function. Near the summit,
the obstacle is assumed locally paraboloidal, with equation

z

h
∼ 1 − β

2

x2
1 + y2

�2
, (3.9)

where β is a scaled curvature equal to 1 for a hemisphere, so that b2(z) ∼ (2/β)�2(1 −
z/h). The distribution becomes

q(x1) ∼ 4π

β
�2U

(
1 − z

h

)
∂

∂x1

δ(x1)δ(y)H (h − z). (3.10)

Greenslade (1992) has proposed using this limiting form as the source of the waves,
‘purely as an illustrative example’ and with ‘no guarantee that the result is accurate
for the given [obstacle] profile’. On heuristic grounds, Newley, Pearson & Hunt (1991)
have adopted a similar representation, with Lorentzian horizontal delocalization, as
[1 + (x2

1 + y2)/�2]−3/2.
Both representations fail to account for the fact that the waves are generated in the

summit layer. Instead, forcing is considered to take place along the whole height of
the obstacle, even becoming zero at the level of the summit in (3.10). More precisely,
given that (3.10) is a limiting form of the source (3.8) of the O(1) horizontal flow
and O(F 2) vertical motion in the lower layer, then its use for the waves amounts to
taking this O(F 2) motion as the forcing, given by (3.7b) for a hemisphere, instead of
the O(F ) vertical motion in the summit layer.

Like Hunt & Richards (1984), Hunt et al. (1988) and Greenslade (2000), we will
adopt the alternative view that, the flow being, to leading order, purely horizontal in
the lower layer and partly vertical in the summit layer, the two layers being separated
by the dividing streamsurface, then the portion of the obstacle protruding above this
surface in the summit layer acts as a cut-off obstacle, radiating lee waves in the upper
layer while the lower layer acts as an absorber, preventing reflection at the rigid
boundary z = 0.

The cut-off obstacle, of height h′ = hF , half-length �′ ∼ �(2F/β)1/2 and aspect ratio
ε ′ ∼ ε(βF/2)1/2, is generally flat. (The case of a peaked original obstacle, of aspect
ratio ε so large that ε ′ = O(1), will be excluded in the following.) The flow over
it is characterized by the horizontal internal Froude number F�′ = ε(βF/2)1/2 � 1
and the vertical internal Froude number Fh′ = 1. For such a flow, corresponding
to the hydrostatic region (iii) of figure 2, it is usually thought that neither the
boundary condition nor the equations of motion can be linearized, as the linearization,
corresponding to the flat-obstacle approximation (ii), would require F�′ = O(1) and
Fh′ � 1; see e.g. Baines (1995, p. 239). Accordingly, the approach has not been carried
further in the literature.
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U
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aF

a (1 – F) a

a (2F )1/2

Figure 5. Forcing for strongly stratified flow, at F � 1, past a sphere. Only the top and
bottom portions, of height h′ = U/N = aF and half-length �′ = a[1 − (1 − F )2]1/2 ∼ a(2F )1/2,
of the sphere contribute to wave radiation.

We argue, and will verify later in § 7.1, that these reservations do not apply: for the
waves in the upper layer, both the linear equation of propagation (2.9) and the linear
boundary condition (2.12) can be used. The cut-off obstacle has the elevation

f (x1, y) = h

(
F − β

2

r2
h1

�2

)
H

[
�

(
2F

β

)1/2

− rh1

]
, (3.11)

above the horizontal plane z = (1−F )h indistinguishable, to this order, from the plane
z = h. Hence, by (2.13), it may be represented as the distribution of singularities

q(x1) = −βεU
x1

�
H

[
�

(
2F

β

)1/2

− rh1

]
δ(z − h), (3.12)

of spectrum

q(k) = 4iπFh�U
k

κh

J2

[
κh�(2F/β)1/2

]
κh�

exp(−imh), (3.13)

with kh = (k, l, 0) and κh = |kh|; the factor 2 associated in (2.13) with the reflection at
the horizontal surface z = 0 has been omitted, consistently with the interpretation of
the lower layer as an absorber. In this way a new and original representation of a
plane-mounted obstacle as a source of lee waves has been derived, appropriate for
F � 1.

Returning to the moving sphere, the situation is, to leading order, as depicted in
figure 5: the top portion of the sphere in the top layer (1 − F )a < z <a, and its
bottom portion in the bottom layer −a < z < −(1 − F )a, act as cut-off flat bodies,
radiating small-amplitude lee waves in the upper layer z > a and lower layer z < −a,
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respectively; in between, purely horizontal flow takes place in the middle layer
|z| < (1 − F )a which acts as an absorber isolating the waves radiated in the upper
layer from those radiated in the lower layer. Each cut-off body can be represented by
the distribution of singularities

q±(x1) = −U
x1

a
H

[
a(2F )1/2 − rh1

]
δ(z ∓ a), (3.14)

of spectrum

q±(k) = 4iπFa2U
k

κh

J2

[
κha(2F )1/2

]
κha

exp(∓ima). (3.15)

This is the model that we shall use for F � 1.
In the same way as the representation (3.5) of the sphere amounts to considering,

for F � 1, the O(1) flow illustrated in figure 3 as the basic flow responsible for the
generation of lee waves, the representation (3.14) amounts to considering, for F � 1,
the O(F ) flow past the body illustrated in figure 5 as the basic flow, instead of the
O(F 2) flow of Drazin’s (1961) theory illustrated in figure 4.

4. Wave equation
Having established that, for either weak or strong stratification, lee waves are

small-amplitude disturbances to an appropriate base state, and having determined
the representation of the sphere in each case, we move on to writing the equations of
motion. A fixed frame of reference is used, such that the fluid is at rest at infinity. The
system of coordinates (x, y, z) is also fixed, with origin O at the position at t = 0 of the
centre of the sphere. The position x = (x, y, z) in this system, the velocity u = (u, v, w)
relative to this frame and, for irrotational flow, the associated velocity potential φ are
related to the position x1 = (x1, y, z), velocity u1 = (u1, v, w) and velocity potential φ1

relative to the sphere by x1 = x + Ut , u1 = u + U and φ1 = φ + Ux1, respectively.
In the presence of a source of mass releasing the volume q of fluid per unit volume

per unit time, the small-amplitude disturbances ρ, p and u to the density ρ0, pressure
p0 and velocity 0 at rest are governed by the linearized equations of motion

ρ0

∂u
∂t

= −∇p + ρg, ∇ · u = q,
∂ρ

∂t
= ρ0

N2

g
w, (4.1a,b,c)

respectively the Euler equation, the equation of continuity and the equation of state,
with g = −gez the acceleration due to gravity and ez a unit vector along the z-axis.
The wave and vortex components of the motion are separated as discussed by Voisin
(2003). The vortex component, containing all the vertical vorticity, is constant and
hence zero for motion started from rest. The wave component is expressed as

ρ = ρ0

N2

g

∂2

∂t∂z
χ, p = −ρ0

(
∂2

∂t2
+N2

)
∂

∂t
χ, u =

(
∂2

∂t2
∇+N2∇h

)
χ, (4.2)

in terms of a wave function χ satisfying the equation of propagation(
∂2

∂t2
∇2 + N2∇2

h

)
χ = q. (4.3)

In the following, this equation will be solved in terms of the Green’s function
G(x, t), corresponding to unit impulsive point forcing q(x, t) = δ(x)δ(t), and of its
Fourier transform G(k, ω). Both have been calculated by Voisin (1991b, 2003). From
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(4.3) we obtain immediately

G(k, ω) =
1

(ω + i0)2κ2 − N2κ2
h

, (4.4)

where the notation ω + i0 = limε→0(ω + iε), with ε > 0, means that to the frequency is
added a positive imaginary part which is later allowed to tend to 0. This procedure
ensures that the radiation condition, in the form of the requirement of causality,
is satisfied. Upon introduction of Hadamard’s finite part Pf and application of the
Sokhotsky–Plemelj formula, the real and imaginary parts of G(k, ω) separate as

G(k, ω) = Pf

(
1

ω2κ2 − N2κ2
h

)
− iπδ

(
ω2κ2 − N2κ2

h

)
sign ω. (4.5)

Inverse Fourier transformation in space, followed by addition of the contributions of
the singular frequencies of G(x, ω) to the inverse transformation in time, yields, at
large times when N |t | � 1,

G(x, t) ∼ − H (t)

(2π)3/2Nrh

[
cos(Nt |z|/r − π/4)

(Nt |z|/r)1/2
+

sin(Nt − π/4)

(Nt)1/2

]
, (4.6)

namely a superposition of gravity waves of frequency N |z|/r and buoyancy oscillations
of frequency N .

5. Wave drag
5.1. General expression

Calculations of the internal wave drag in the literature, for example by Blumen (1965)
and Baines (1995, § 6.1.6) for the horizontal flow over an obstacle, or by Warren (1960)
for the vertical motion of a body and MacKinnon, Mulley & Warren (1969) for its
inclined motion, rely generally on the obstacle or body being flat or slender. In order to
deal with a sphere, we use another approach introduced by Gorodtsov & Teodorovich
(1980) for the horizontal motion of a three-dimensional source, Gorodtsov (1980) for
its vertical motion, and Gorodtsov & Teodorovich (1981) for the motion of a two-
dimensional source. The approach was refined later by Gorodtsov & Teodorovich
(1982, 1983), then extended by Gorodtsov, Reznik & Stepanyants (1997) to both drag
and lift for both two- and three-dimensional sources. It has been applied recently
by Scase & Dalziel (2004) to the inclined motion of a sphere, represented by the
appropriate generalization of the source (3.5).

The approach proceeds from the energy equation

∂

∂t

(
1
2
ρ0u2 + 1

2
ρ0N

2ζ 2
)

+ ∇ · (pu) = pq, (5.1)

deduced from (4.1) and leading to the identification of ρ0u2/2 + ρ0N
2ζ 2/2 as the

wave energy density, pu as the wave energy flux, and pq as the work exerted by the
source per unit volume per unit time; here ζ , defined by w = ∂ζ/∂t , is the vertical
displacement. For uniform translation of a source q(x, t) = q0(x − u0t) at the velocity
u0, the wave energy density is independent of time, implying that the power P lost by
the source to the waves may be calculated either by integration of the wave energy
flux over a surface encompassing the source path, or by evaluation of the rate of
work produced within the whole fluid domain. The equivalence of the two methods
has been verified for vertical translation by Gorodtsov & Teodorovich (1983).
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Applying the second method and using Parseval’s theorem, we have

P =

∫
p(x, t)q(x, t) d3x =

1

(2π)3

∫
p(k, t)q(−k, t) d3k, (5.2)

which for a source of spectrum q(k, ω) = 2πq0(k)δ(ω − u0 · k) is evaluated in terms of
the Fourier transform G(k, ω) of the Green’s function as

P = i
ρ0

(2π)3

∫
(u0 · k)[N2 − (u0 · k)2]|q0(k)|2G(k, u0 · k) d3k. (5.3)

This power is independent of time and equal to |u0| times the wave drag D on
the source. Only the imaginary part, odd with respect to the frequency, of G(k, ω)
contributes to the integration. Using (4.5), we obtain

D =
ρ0N

3

8π2|u0|

∫
κhm

2

κ3
|q0(k)|2δ

[
(u0 · k)2κ2 − N2κ2

h

]
d3k, (5.4)

an integral over the wavenumber surface defined by the combination of the dispersion
relation ω2κ2 = N2κ2

h and Doppler relation ω = u0 ·k, which is consistent with Lighthill
(1967, 1978, § 4.12).

For horizontal translation at the velocity u0 = −U ex , with ex a unit vector along
the x-axis, the wave drag reduces to

D =
ρ0

16π2

∑
±

∫ N/U

−N/U

dk

∫ ∞

−∞
dl

(
N2/U 2 − k2

k2 + l2

)1/2

|q0(k±)|2, (5.5)

with

k± =

[
k, l, ±

(
1 +

l2

k2

)1/2 (
N2

U 2
− k2

)1/2
]

. (5.6)

More generally, for translation at the velocity U at the angle α to the vertical, upon
introduction of the spherical polar coordinates (κ, ϑ, ϕ) according to

k = κ sinϑ cos ϕ, l = κ sinϑ sinϕ, m = κ cosϑ, (5.7)

the wave drag becomes

D =
ρ0N

2

16π2U 2

∫ π

0

dϑ

∫ 2π

0

dϕ
cos2 ϑ

| sinα cos ϕ + cos α cotϑ | |q0(k0)|2, (5.8)

with

k0 =
N

U

(sinϑ cos ϕ, sinϑ sinϕ, cosϑ)

| sinα cos ϕ + cosα cotϑ | . (5.9)

We apply now each expression to the calculation of the wave drag coefficient
CD =(2D)/(πρ0a

2U 2) of the sphere, based on the two representations (3.5) and (3.14)
of this sphere, with the notation q(x1) changed to q0(x).

5.2. Weak stratification

For weak stratification, corresponding to the source (3.5), a change of variables
according to ξ = U |k|/N = sinϑ and η = κh/|k| = 1/| cosϕ| yields the single integral

CD =
9π

8F

∫ ∞

1

dη

η3(η2 − 1)1/2
J 2

3/2

(
η

F

)
. (5.10)
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Figure 6. Wave drag coefficient CD versus internal Froude number F , for weakly stratified
flow past a sphere. The exact value of the drag (solid curve) is plotted together with its
expansions for either (a) small F or (b) large F , to various orders (dashed curves, each
accompanied by the indication of the highest order retained).

The variations with F of this integral, first derived by Gorodtsov & Teodorovich
(1982), are plotted in figure 6.

Being based on a representation of the sphere appropriate at F � 1, this result is
only interesting through its expansion as F → ∞. The leading-order term (1.5a) of the
expansion has been given by Gorodtsov & Teodorovich (1982) with no explanation.
Its derivation by standard methods is complicated by the need to separate, as F → ∞,
the global contribution of the majority η = O(1) of the range of integration, inside
which the Bessel function J3/2(η/F ) may be replaced by its expansion for small η/F ,
from the local contribution of the small region η = O(F ) at infinity, inside which
(η2 −1)1/2 may be replaced by its expansion for large η. As described by Hinch (1991,
§ 3.4), the separation may be achieved by splitting the range of integration into two
at an intermediate point δ =O(F 1/2), such that 1 � δ � F . The global contribution is
evaluated as

9π

8F

∫ δ

1

J 2
3/2(η/F )

η3(η2 − 1)1/2
dη =

1

4F 4

[
ln(2δ) − δ2

10F 2
− 1

4δ2
+ O

(
1

F 2

)]
, (5.11)

and the local contribution as

9π

8F

∫ ∞

δ

J 2
3/2(η/F )

η3(η2 − 1)1/2
dη =

1

4F 4

[
ln

(
F

2δ

)
+

7

4
−γ+

δ2

10F 2
+

1

4δ2
+O

(
1

F 2

)]
, (5.12)

the combination of the two being as expected independent of the artificially introduced
δ and given by (1.5a). However, the procedure is rather cumbersome, even only for
the derivation of this leading-order term, and it would become rapidly intractable
should higher-order terms be looked for or should a double integral be considered as
later in § 5.3. For this reason we shall use the alternative and more powerful method
known as Mellin–Barnes integration.

Mellin–Barnes integrals were introduced in the early twentieth century separately
by Mellin (1910), in connection with the theory of integral transforms, and Barnes
(1906, 1907, 1908), in connection with the theory of hypergeometric series. Shortly
afterwards, they were applied to a number of special functions, including Bessel
functions (Watson 1944, § § 6.5–51, 7.5–51, 13.5 and 13.6–61), but for the most part
they have remained little used in applied mathematics until being revived recently by
Bleistein & Handelsman (1986) and Paris & Kaminski (2001), among others. In the
following we shall adopt the presentation of Paris & Kaminski, which incorporates
the latest extensions of the theory.
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The method is best explained by example. We start from the representation of the
square of the Bessel function Jν(x) as the Mellin–Barnes integral

J 2
ν (x) =

1

2iπ3/2

∫ +i∞

−i∞

Γ (s)Γ (1/2 + ν − s)

Γ (1 + ν − s)Γ (1 + 2ν − s)
x2ν−2s ds, (5.13)

deduced from the combination of Watson (1944, § 13.61) with the duplication formula.
This representation is valid for x > 0 and Re ν � −3/4, the integral being absolutely
convergent for Re ν > −1/4 and semi-convergent for Re ν � −3/4. The contour of
integration is the imaginary axis, indented to leave the simple poles s = −n of Γ (s)
on the left, with n= 0, 1, 2, . . ., and s = ν + 1/2 + n of Γ (1/2 + ν − s) on the right.
Substitution in (5.10) followed by interchange of the order of integration yields

CD =
9π

16F 4

1

2iπ

∫ +i∞

−i∞

Γ 2(s)Γ (2 − s)

Γ (s + 1/2)Γ (5/2 − s)Γ (4 − s)
F 2s ds, (5.14)

or alternatively, by the reflection formula,

CD =
9π

16F 4

1

2iπ

∫ +i∞

−i∞

Γ 2(s)

(s − 1/2)(s − 3/2)(s − 2)(s − 3)
cos(sπ)F 2s ds. (5.15)

In both expressions, the integrand has an infinite sequence of double poles s = −n on
the left of the contour, and two simple poles s = 2, 3 on the right.

The asymptotic formula Γ (as + b) ∼ (2π)1/2e−as(as)as+b−1/2, valid for arbitrary
constants a and b as |s| → ∞ with | arg s| < π and a > 0, implies that, at infinity along
any contour parallel to the imaginary axis, namely as |τ | → ∞ with s = σ + iτ , we
have

Γ (as + b) ∼ (2π)1/2e−πa|τ |/2(a|τ |/e)iaτ (iaτ )aσ+b−1/2. (5.16)

In the same limit, we also have cos(asπ) ∼ eπa|τ |/2. Accordingly, the integrand of
(5.15) has the algebraic behaviour |τ |2σ−5(F |τ |/e)2iτ as |τ | → ∞, implying that the
contour of integration may be displaced at infinity to the left, but not beyond the
‘barrier’ Re s = 5/2 to the right.

Displacement to the left over the poles on the negative real axis yields the series
expansion

CD =
9

2F 4

∞∑
n=0

(−1)n

F 2n

1

(n!)2(2n + 1)(2n + 3)(n + 2)(n + 3)

×
[
lnF + ψ(n + 1) +

1

2n + 1
+

1

2n + 3
+

1

2n + 4
+

1

2n + 6

]
, (5.17)

of which (1.5a) is the leading order and which becomes, to next order,

CD =
lnF + 7/4 − γ

4F 4
− ln F + 73/40 − γ

40F 6
+ O

(
1

F 8

)
, (5.18)

with ψ(x) the digamma function. This expansion is compared with the numerical
determination of CD in figure 6(b).

The corresponding expansion as F → 0, though physically meaningless, is also of
interest, first to emphasize the ability of the method to account for the oscillations
visible in figure 6, and secondly to delineate how the method is applied in this case,
in a simpler example than will occur in § 5.3 for strong stratification, when the limit
F → 0 will become physically meaningful.
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The existence of a ‘contour barrier’ is indicative of the oscillatory behaviour of
a Mellin–Barnes integral. To deal with it, we apply the procedure described in § 5.6
of Paris & Kaminski (2001). In (5.15), we displace the contour of integration to the
right, over the pole s = 2 to the new position Re s = c, with 2 < c < 5/2. Then we write
cos(sπ) = 2 cos2(sπ/2) − 1, so as to separate CD into two parts according to

CD = C1 + C2. (5.19)

In the first part

C1 =
3

4
− 9π

16F 4

1

2iπ

∫ c+i∞

c−i∞

Γ 2(s)

(s − 1/2)(s − 3/2)(s − 2)(s − 3)
F 2s ds, (5.20)

the integrand has the same pole s = 3 to the right of the contour as for CD , but
exponentially small behaviour e−π|τ ||τ |2σ−5(F |τ |/e)2iτ as |τ | → ∞. In the second part

C2 =
9π

8F 4

1

2iπ

∫ c+i∞

c−i∞

Γ 2(s)

(s − 1/2)(s − 3/2)(s − 2)(s − 3)
cos2

(
s

π

2

)
F 2s ds, (5.21)

the integrand has the same algebraic behaviour as |τ | → ∞ as for CD , but no
singularity to the right of the contour.

For C1, we simply displace the contour to the right over the pole s = 3 to obtain

C1 =
3

4
+

3

5
F 2. (5.22)

For C2, we deform the contour to a loop L, having endpoints at infinity in the
half-plane Re s < 0, starting in the quarter-plane Im s < 0, intersecting the positive
real axis at large Re s > 0 and finishing in the quarter-plane Im s > 0, so that |s| is
everywhere large on L. Hence, substitution of the inverse factorial expansion

Γ 2(s)Γ (s − 3/2)Γ (s − 3)

Γ (s + 1/2)Γ (s − 1)
∼ π1/2211/2−2s

∞∑
n=0

(−1)ncnΓ

(
2s − 9

2
− n

)
, (5.23)

obtained by the method described in § 2.2 of Paris & Kaminski (2001), is allowed. Its
coefficients satisfy the recurrence relation

c0 = 1, cn = − 1

4n

n−1∑
m=0

enmcm (n � 1), (5.24)

with

enm =
2

9

Γ (n + 11/2)

Γ (m + 7/2)

[
1 − ψ

(
n +

11

2

)
+ ψ

(
m +

7

2

)]

+
8

27

Γ (n + 5/2)

Γ (m + 1/2)
− 14

27

Γ (n − 1/2)

Γ (m − 5/2)
, (5.25)

so that, in particular,

c0 = 1, c1 = −15

8
, c2 =

233

128
, c3 =

6587

1024
. (5.26)

Use of the integrals

1

2iπ

∫
L

Γ (s − α)z−s ds = z−α exp(−z), (5.27)

1

2iπ

∫
L

Γ (s − α)

(
cos
sin

)(
s

π

2

)
z−s ds = z−α

(
cos
sin

) (
z + α

π

2

)
, (5.28)
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Figure 7. Wave drag coefficient CD versus internal Froude number F , for strongly stratified
flow past a sphere. The mode of representation is the same as in figure 6.

taken from § 3.3 of Paris & Kaminski (2001) and valid for all z and arbitrary α

provided the loop L embraces all the poles of Γ (s − α), yields immediately

C2 ∼ 9

16
(πF )1/2

∞∑
n=0

(−1)ncn

(
F

2

)n [
exp

(
− 2

F

)
+ cos

(
2

F
+

π

4
+ n

π

2

)]
. (5.29)

Adding the two parts and omitting the exponentially small terms in C2, we obtain
the asymptotic expansion

CD ∼ 3

4
+

3

5
F 2 +

9

16
(πF )1/2

∞∑
n=0

(−1)ncn

(
F

2

)n

cos

(
2

F
+

π

4
+ n

π

2

)
, (5.30)

with first few orders

CD =
3

4
+

9

16
(πF )1/2 cos

(
2

F
+

π

4

)
−135

256
π1/2F 3/2 sin

(
2

F
+

π

4

)
+

3

5
F 2+O

(
F 5/2

)
, (5.31)

which are compared with the numerical determination of CD in figure 6(a).

5.3. Strong stratification

For strong stratification, owing to the presence of the middle absorbing layer, the
two contributions of the top and bottom portions of the sphere, represented by the
sources q+ and q− from (3.14), respectively, may be superposed incoherently. The
wave drag coefficient is given by the double integral

CD =
32

π
F 2

∫ 1

0

dξ

ξ 2

∫ ∞

1

dη

η4

(
1 − ξ 2

η2 − 1

)1/2

J 2
2

[
ξη

(
2

F

)1/2
]

, (5.32)

whose variations with F are plotted in figure 7.
To derive its expansion as F → 0, we turn as above to Mellin–Barnes integration.

Substitution of (5.13) followed by interchange of the order of integration yields

CD =
16

π1/2

1

2iπ

∫ +i∞

−i∞

Γ 2(s)Γ (3/2 − s)Γ (5/2 − s)

Γ (s + 1/2)Γ 2(3 − s)Γ (5 − s)

(
F

2

)s

ds, (5.33)

or alternatively, by the reflection formula,

CD = − 16

π3/2

1

2iπ

∫ +i∞

−i∞

Γ 2(s)Γ 2(s − 2)Γ (s − 4)

Γ (s + 1/2)Γ (s − 1/2)Γ (s − 3/2)

sin3(sπ)

cos2(sπ)

(
F

2

)s

ds. (5.34)

The integrand has an infinite sequence of double poles s = −n on the left of the
contour, with n= 0, 1, 2, . . . , and a simple pole s =3/2 and an infinite sequence
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of double poles s = 5/2 + n on the right. At infinity along any path parallel to the
imaginary axis, that is as |τ | → ∞ with s = σ + iτ , the integrand has the algebraic
behaviour |τ |2σ−15/2(|τ |/e)2iτ (F/2)iτ . Accordingly, the contour of integration may be
displaced at infinity to the left, but no further than the barrier Re s = 15/4 to the right.

Displacement to the left over the poles on the negative real axis yields the series
expansion

CD =
16

π3/2

∞∑
n=0

(−1)n
(

2

F

)n
Γ (n+1/2)Γ (n+3/2)Γ (n+5/2)

(n!)2[(n + 2)!]2(n + 4)!

[
ln

(
F

2

)
+ 2ψ(n+ 1)

+ 2ψ(n + 3) + ψ(n + 5) − ψ

(
n +

1

2

)
− ψ

(
n +

3

2

)
− ψ

(
n +

5

2

)]
, (5.35)

which is more effective, for the evaluation of CD in Mathematica, than the double
integral (5.32) as soon as, say, F > 0.02. To the first two orders,

CD =
lnF + 5/12 − 2γ + 5 ln 2

16
− ln F + 13/60 − 2γ + 5 ln 2

192F
+ O

(
1

F 2

)
, (5.36)

which is compared in figure 7(b) with the numerical evaluation of CD .
The expansion of CD at small F follows from the same procedure as in § 5.2. In

(5.34), the contour of integration is displaced to the right, over the pole s = 3/2 to
the new position Re s = c, with 2 < c < 5/2. Then the identity sin2(sπ) = 1 − cos2(sπ)
is used to separate CD into two parts according to

CD = C1 + C2. (5.37)

In the first part

C1 =
211/2

15π
F 3/2 − 16

π3/2

1

2iπ

∫ c+i∞

c−i∞

Γ 2(s)Γ 2(s − 2)Γ (s − 4)

Γ (s + 1/2)Γ (s − 1/2)Γ (s − 3/2)

sin(sπ)

cos2(sπ)

(
F

2

)s

ds,

(5.38)
the integrand has the same singularities to the right of the contour as for
CD , but exponentially small behaviour e−2π|τ ||τ |2σ−15/2(|τ |/e)2iτ (F/2)iτ as |τ | → ∞.
Displacement of the contour to the right over the poles on the positive real axis yields

C1 ∼ 211/2

15π
F 3/2 − 23/2

π7/2
F 5/2

∞∑
n=0

(−1)n
(

F

2

)n
Γ (n − 3/2)Γ 2(n + 1/2)Γ 2(n + 5/2)

n! (n + 1)! (n + 2)!

×
[

ln

(
2

F

)
+ ψ(n + 1) + ψ(n + 2) + ψ(n + 3)

− ψ

(
n − 3

2

)
− 2ψ

(
n +

1

2

)
− 2ψ

(
n +

5

2

)]
. (5.39)

In the second part

C2 =
16

π3/2

1

2iπ

∫ c+i∞

c−i∞

Γ 2(s)Γ 2(s − 2)Γ (s − 4)

Γ (s + 1/2)Γ (s − 1/2)Γ (s − 3/2)
sin(sπ)

(
F

2

)s

ds, (5.40)

the integrand has the same algebraic behaviour as |τ | → ∞ as for CD , but no
singularity to the right of the contour. Substitution of the inverse factorial expansion

Γ 2(s)Γ 2(s − 2)Γ (s − 4)

Γ (s + 1/2)Γ (s − 1/2)Γ (s − 3/2)
∼ π1/228−2s

∞∑
n=0

(−1)ncnΓ (2s − 7 − n), (5.41)



296 B. Voisin

whose coefficients satisfy the recurrence relation (5.24) with

enm =
3

64

(n + 7)!

(m + 5)!

[
7

24
− ψ(n + 8) + ψ(m + 6)

]

+
15

32

(n + 3)!

(m + 1)!

[
77

60
− ψ(n + 4) + ψ(m + 2)

]
− 315

512

(n − 1)!

(m − 3)!
, (5.42)

so that, in particular,

c0 = 1, c1 = 0, c2 =
9

2
, c3 = 33, (5.43)

followed by use of the integral (5.28), yields

C2 ∼ −21/2

π
F 7/2

∞∑
n=0

(−1)ncn

(
F

8

)n/2

cos

(
23/2

F 1/2
+ n

π

2

)
. (5.44)

Adding the two parts and retaining the first few orders, we obtain the asymptotic
expansion

CD =
211/2

15π
F 3/2 − 3

23/2π
F 5/2

[
ln

(
1

F

)
− 11

2
+ 2γ + 11 ln 2

]
− 75

217/2π
F 7/2

×
[

ln

(
1

F

)
− 39

5
+ 2γ + 11 ln 2

]
− 21/2

π
F 7/2 cos

(
23/2

F 1/2

)
+ O(F 9/2), (5.45)

compared in figure 7(a) with the numerical evaluation of CD .
To leading order, the small-F expansion becomes

CD ∼ 32
√

2

15π
F 3/2 ≈ 0.96F 3/2. (5.46)

Not only does it confirm the variation as F 3/2 derived by Greenslade (2000) in (1.6a),
but also it predicts the value of the constant B in front of the variation, 0.96, within
the error bounds of the values deduced in table 1 from the experiments of Mason
(1977), Lofquist & Purtell (1984), Shishkina (1996) and Vosper et al. (1999).

The consistency of the two expansions of the wave drag coefficient, (5.18) for
F � 1 and (5.45) for F � 1, with the analysis by Greenslade (2000) of the available
experimental measurements of the drag validates the underlying representations (3.5)
and (3.14) of the sphere, and legitimates their use for the calculation of the waves
themselves.

6. Wave field
6.1. General expression

The calculation of the waves from a point monopole q(x, t) =H (t)Q(t)δ[x − x0(t)],
starting at time t = 0 moving along the path x0(t) with non-oscillatory strength Q(t),
has been performed by Voisin (1991a, 1994). Its extension to a source of finite size a,
of the form q(x, t) =H (t)q0[x − x0(t), t] with q0(x, t) vanishing rapidly for r � a and
not oscillating with t , has been sketched by Voisin (1991a) and used by Dupont &
Voisin (1996), Scase & Dalziel (2004) and Broutman & Rottman (2004), but so far
has remained unpublished. We present the extension briefly, for application to the
sphere.
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The solution of the wave equation (4.3) is written in terms of the Green’s function
G(x, t) as the convolution integral

χ(x, t) =

∫ t

0

dt ′
∫

d3x ′ q0(x ′, t ′)G[x − x0(t
′) − x ′, t − t ′], (6.1)

namely as a superposition of impulses emitted at the various elapsed times 0 < t ′ < t

by the various points x0(t
′) + x ′ of the source at the various positions x0(t

′) of the
reference point of this source along its path; hereinafter, a factor H (t) is implicit in
the expression for the waves.

At large propagation times compared with the buoyancy period, for N(t − t ′) � 1,
we may replace the Green’s function by its asymptotic expansion (4.6) to obtain

χ(x, t) ∼ − 1

(2π)3/2N

∫ t

0

dt ′
∫

d3x ′ q0(x ′, t ′)

|Xh(t ′) − x ′
h|

cos

[
N(t − t ′)

|Z(t ′) − z′|
|X(t ′) − x ′| − π

4

]
[
N(t − t ′)

|Z(t ′) − z′|
|X(t ′) − x ′|

]1/2
,

(6.2)
with X(t ′) = x − x0(t

′) the position at t ′ of the observation point relative to the
source. Buoyancy oscillations, which are subdominant compared with gravity waves
in the physical disturbances, such as density, pressure and velocity, associated with
the Green’s function (Voisin 1991b), have been omitted.

In the gravity waves (6.2), the phase of the integrand varies with x ′ much more
rapidly than the amplitude. Hence, at large distances from the source compared with
its size, for R(t ′) � a, we may expand the phase as

−N(t − t ′)
|Z(t ′) − z′|
|X(t ′) − x ′| ∼ −N(t − t ′)

|Z(t ′)|
R(t ′)

− k(t ′) · x ′, (6.3)

in terms of the wavenumber vector

k(t ′) = ∇
[

−N(t − t ′)
|Z(t ′)|
R(t ′)

]
= N(t − t ′)

|Z(t ′)|
R2(t ′)

[
X(t ′)

R(t ′)
− R(t ′)

Z(t ′)
ez

]
, (6.4)

while setting x ′ = 0 in the amplitude. We obtain

χ(x, t) ∼ − Re

(2π)3/2N

∫ t

0

q0[k(t ′), t ′]

Rh(t ′)

exp

{
−i

[
N(t − t ′)

|Z(t ′)|
R(t ′)

− π

4

]}
[
N(t − t ′)

|Z(t ′)|
R(t ′)

]1/2
dt ′. (6.5)

The spatial integration has resulted in the replacement of the source by its spectrum,
and the only remaining integration is with respect to time.

At large times after the start-up compared with the buoyancy period, for Nt � 1,
the method of stationary phase may be applied to this integration. The point of
stationary phase ts, defined by the implicit equation

R(ts)

t − ts
= u0(ts) ·

[
X(ts)

R(ts)
− R(ts)

Z(ts)
ez

]
, (6.6)

with u0(t) = dx0/dt the velocity of the source, represents the time when the source
has emitted, at position x0(ts), the waves received later at time t at position x. The
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wave function becomes

χ(x, t) ∼ 1

2πN2|A|1/2

R

Rh|Z|Im
{

q0(k, ts) exp

{
i

[
Φ − π

2
H (A)

]}}
, (6.7)

where all quantities are evaluated implicitly at the retarded time, including the phase

Φ = −N(t − ts)
|Z|
R

= −N

cg

|Z| = −ω(t − ts), (6.8)

the frequency and wavenumber vector

ω = −∂Φ

∂t
= N

|Z|
R

, k = ∇Φ =
ω

cg

(
X
R

− R

Z
ez

)
, (6.9)

the group velocity

cg =
X

t − ts
= u0 ·

(
X
R

− R

Z
ez

)
X
R

, (6.10)

and the factor

A = R
γ 0

c2
g

·
(

X
R

− R

Z
ez

)
−

(
u0

cg

× X
R

)2

+ 2
u0

cg

· R

Z
ez, (6.11)

with γ 0(t) = d2x0/dt2 the acceleration of the source. The assumption of large
propagation times N(t − ts) � 1 is seen to amount to that of large distances from
the source compared with the wavelength κR � 1. Hence, in total, the asymptotic
expression for the waves requires Nt � 1, R � a and κR � 1.

The density, pressure and velocity follow from the differentiation of the wave
function according to (4.2), taking into account that, to leading order, only the
variations of the phase, governed by (6.9), are significant. The vertical displacement
is obtained as

ζ (x, t) ∼ − signZ

2πcg|A|1/2

Rh

R2
Im

{
q0(k, ts) exp

{
i

[
Φ − π

2
H (A)

]}}
. (6.12)

We apply this result to the representations (3.1), (3.5) and (3.14) of the sphere, with
the notation q(x1) changed to q0(x).

6.2. Horizontal motion

For uniform horizontal translation x0 = −Utex at the velocity u0 = −U ex , upon
introduction of spherical polar coordinates (r1, ϑ1, ϕ1) relative to the current position
of the source and of axis its path, namely

x1 = x + Ut = r1 cosϑ1, y = r1 sinϑ1 cosϕ1, z = r1 sinϑ1 sinϕ1, (6.13)

the solution of the retarded time equation (6.6) is

t − ts =
r1

U cosϑ1

, (6.14)

implying, by the condition of causality ts < t , that the waves are only found
downstream, in the half-space x1 > 0. The path travelled by the waves between
emission and reception is

X = r1 tan ϑ1(− sinϑ1, cosϑ1 cos ϕ1, cosϑ1 sinϕ1), (6.15)

in terms of which we obtain immediately the frequency

ω = N cosϑ1| sinϕ1|, (6.16)
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the wavenumber vector

k =
N

U

(
− cos ϑ1| sinϕ1|, cos2 ϑ1

sinϑ1

cosϕ1| sinϕ1|, −sin2 ϑ1 + cos2 ϑ1 cos2 ϕ1

sinϑ1

sign z

)
,

(6.17)

the group velocity

cg = U sinϑ1(− sinϑ1, cosϑ1 cos ϕ1, cosϑ1 sinϕ1), (6.18)

and the vertical displacement

ζ (x, t) ∼ − sign z

2πUr1

(1 + cot2 ϑ1 cos2 ϕ1)
1/2Im

[
q0(k, ts) exp

(
−i

N

U
r1| sinϕ1|

)]
, (6.19)

in which a factor H (x1) is implicit.
Considering the three possible representations of the sphere, we have, in particular,

for the dipole (3.1),

ζ (x, t) ∼ Na3

Ur1

cos ϑ1 sinϕ1(1 + cot2 ϑ1 cos2 ϕ1)
1/2 cos

(
N

U
r1 sinϕ1

)
; (6.20)

for the weakly stratified model (3.5),

ζ (x, t) ∼ 3
a2

r1

cos ϑ1 sin ϕ1j1

[
Na

U
(1 + cot2 ϑ1 cos2 ϕ1)

1/2

]
cos

(
N

U
r1 sinϕ1

)
; (6.21)

and for the strongly stratified model (3.14),

ζ (x, t) ∼ 2
U 2

N2r1

J2

[
(2Na/U )1/2 cosϑ1 sinϕ1(1 + cot2 ϑ1 cos2 ϕ1)

1/2
]

cos ϑ1 sinϕ1(1 + cot2 ϑ1 cos2 ϕ1)1/2

× cos

{
N

U
[r1| sinϕ1| − a sinϑ1(1 + cot2 ϑ1 cos2 ϕ1)]

}
. (6.22)

The vertical displacement field in the horizontal plane z/a = 5 is represented in figure 8
in perspective view, so as to better illustrate the shape of the isopycnal surfaces, and in
figure 9 in plane view, so as to better illustrate the distribution of the wave amplitudes.
The field of view has been defined after that in figures 1 and 2 of Broutman & Rottman
(2004). Two values, 1 and 1/4, of F have been chosen, assumed respectively ‘large’ and
‘small’. This choice has been made both for comparison, 1 being the value considered
by Broutman & Rottman and 1/4 the smallest value considered by Hanazaki (1988),
and for illustration, 1 being as large as possible and 1/4 as small as possible without
preventing the distinctive influence of each representation of the sphere from being
visible within the field of view. No implication must be inferred, at this stage, regarding
how large or how small F has to be for the respective representations to be valid
approximations; this will be discussed later in § 8. Accordingly, for both values of F ,
all three representations have been considered.

For the dipole, the wave field exhibits the crescent shape, associated with hyperbolic
curves of constant phase, obtained theoretically by Wurtele (1957), Crapper (1959),
Wu (1965), Miles (1971), Sturova (1974), Makarov & Chashechkin (1981, 1982),
Janowitz (1984), Umeki & Kambe (1989) and Voisin (1994), among others, and
observed both in the laboratory (Hopfinger et al. 1991; Bonneton et al. 1993) and in
the field (Wurtele 1957; Umeki & Kambe 1989); see also Baines (1995, § 6.1.3).

When the size of the sphere comes into play, interferences take place, which become
more pronounced as F becomes smaller. For weak stratification the interferences
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Figure 8. Isopycnal surface z/a = 5 above a sphere, for (a, b) the dipole (3.1), (c, d ) the
weakly stratified model (3.5) and (e, f ) the strongly stratified model (3.14). The internal Froude
number is F =1 in (a), (c) and (e), and F = 1/4 in (b), (d ) and (f ).

manifest themselves through the amplitude factor

3
j1(κa)

κa
with κa =

1

F
(1 + cot2 ϑ1 cos2 ϕ1)

1/2, (6.23)

and for strong stratification through the combination of the amplitude factor

4F 2 J2(κh�
′)

(κh�′)2
with κh�

′ =

(
2

F

)1/2

cosϑ1| sinϕ1|(1 + cot2 ϑ1 cos2 ϕ1)
1/2, (6.24)

where �′ = a(2F )1/2, and the phase lag

|m|a =
1

F
sinϑ1(1 + cot2 ϑ1 cos2 ϕ1). (6.25)
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Figure 9. Vertical displacement ζ/a in the plane z/a = 5 above a sphere, in the same
conditions as for figure 8. The dashed curves are fringes of destructive interference.

The two amplitude factors are represented separately in figure 10(a–d ), in the same
conditions as for figures 8(c–f ) and 9(c–f ).They induce an overall decrease of the
wave amplitude with downstream distance x1, together with the formation of fringes.

The fringes of destructive interference in the horizontal plane z/a = 5 are shown
in figure 9(c–f ). They correspond to the zeros of the Bessel functions J3/2(κa) for
weak stratification and J2(κh�

′) for strong stratification. In the first case the fringes
are hyperbolic and the most significant amplitudes are found near the vertical planes
y = 0 and x1 = 0; in the second case the most significant amplitudes are found either
near the plane y = 0, or at some distance from it outside curves close to parabolas of
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Figure 10. Interference factor in the plane z/a = 5 above a sphere, for (a, b) weak stratification,
after normalization by 3Fj1(1/F ), and (c, d ) strong stratification, after normalization by F 2/2.
The internal Froude number is F = 1 in (a) and (c), and F =1/4 in (b) and (d ).

fixed y2/(x1|z|). The existence, in both cases, of a zone of significant amplitudes near
the plane y =0 may explain the confinement of the waves within a fixed distance
from this plane, predicted theoretically by Crapper (1959, 1962) and Sykes (1978) for
bell-shaped obstacles, and observed experimentally by Castro (1987) for a triangular
ridge of finite width and numerically by Hanazaki (1988) for a sphere and Suzuki &
Kuwahara (1992) for a bell-shaped obstacle.

The assessment of these asymptotic results is twofold: both the far-field assumptions,
namely r1 � U/N and r1 � a, and the representations of the sphere, namely (3.5) at
F � 1 and (3.14) at F � 1, must have their domains of validity specified.

The assessment of the far-field assumptions is made possible by Broutman &
Rottman (2004) who, in the conditions of figure 9(c), have evaluated the waves
numerically based on their expression as a Fourier integral. A similar approach had
been used by Sturova (1974, 1978) for a dipole, and by Smith (1980) and Umeki &
Kambe (1989) for bell-shaped obstacles. Downstream, accounting for the minimal
distance r1/a = 5 from the centre of the sphere in figures 8 and 9, the asymptotic waves
are essentially indistinguishable from the numerical ones. Upstream, the numerical
solution exhibits an additional disturbance of maximum amplitude directly above
or below the sphere. This upstream disturbance is the counterpart, for the three-
dimensional flow of a fluid of infinite depth, of the columnar disturbance observed
for two-dimensional flow or for finite depth, as reviewed e.g. by Baines (1987); it
cannot be predicted by the present approach, owing to the assumption of large
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propagation times. For the dipole, Voisin (1994) has presented an alternative far-field
approach, based on Fourier analysis and yielding an upstream disturbance.

The assessment of the representations of the sphere is deferred until § 8. For the
moment, we point out the illustrative relevance of the assumed ‘large’ value 1 and
‘small’ value 1/4 of F : for F > 1, the fringes of destructive interference would have
moved outside the field of view in figures 8(c,e) and 9(c,e); for F < 1/4, the wavelength
would have become so small that the interference pattern would have been difficult
to delineate in figures 8(d,f ) and 9(d,f ).

7. Approximations for the strongly stratified limit
At this point it is appropriate to go back to two approximations associated with

the representation (3.14) of the sphere in strongly stratified flow, and to investigate
their consistency a posteriori. For convenience, the discussion will be formulated in
terms of the flow past a fixed sphere. The representation, illustrated in figure 5, is
based on the idea that the waves are generated by flat cut-off obstacles, of elevation
h′ = aF , half-length �′ = a(2F )1/2 and aspect ratio ε ′ =(F/2)1/2, lying on the dividing
streamsurfaces close to the top and bottom of the sphere. The flow past these
obstacles is characterized by the horizontal internal Froude number F�′ = (F/2)1/2

and the vertical internal Froude number Fh′ = 1, with F � 1.

7.1. Linear approximation

The first approximation, which we have used, is the linear one, found in the
linearization of the boundary condition and equations of motion. Classically, for
parameters ε, F� and Fh, linearization is considered to require not only ε � 1 but
also F� = O(1), so that Fh � 1, corresponding to region (ii) of figure 2. Baines (1995,
p. 239), in particular, indicates that the actual requirement is the smallness of the
perturbation velocity |u| compared with the incoming velocity U , a requirement which,
coupled with the order-of-magnitude estimates |uh|/U ∝ 1/Fh and |w|/U ∝ ε, yields
the above conditions.

The cut-off obstacles satisfy the first condition ε ′ � 1 but not the following two,
since F�′ � 1 and Fh′ =O(1), corresponding to region (iii) of figure 2. In spite of this,
the perturbation velocity is indeed small compared with the incoming velocity: at a
fixed distance r1 from the sphere comparable with its size a, the perturbation velocity,
proportional in order of magnitude to N times the vertical displacement (6.22), is
such that |u|/U = O(F ). Hence, linearization is allowed.

Upon closer scrutiny, Baines (1995, p. 239) is seen to assume that the motion varies
horizontally on a scale � and vertically on a scale U/N . By contrast, the waves (6.22)
vary on the scale U/N both horizontally and vertically. In figure 9(f ), for example,
the dominant horizontal variations are those of the phase, occurring on the fast scale
U/N , while the variations of the amplitude, associated with the interference factor
(6.24) and occurring on the slow scale �′, arise as a modulation.

The explanation for this apparent paradox lies in the multilayer structure of the
flow, exhibited by Greenslade (1992, 1994) and Hunt et al. (1997) and presented in
§ 3.2: the classical analysis by Baines (1995, p. 239) is relevant in the top and bottom
layers at the levels of the top and bottom of the sphere, respectively, where the
motion has the horizontal scale �′ and vertical scale h′ = U/N of the cut-off obstacles;
and the present analysis is relevant in the upper and lower layers above and below
these levels, respectively, where the motion has, horizontally and vertically, the scale
U/N of buoyancy-induced disturbances. The waves are generated in the top and
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F � 1 F � 1

Region Inner Outer Middle Top & Bottom Shear Upper & Lower

Vertical distance O(1) O(F ) O(1) O(F ) O(F ) O(1)
Horizontal distance O(1) O(F ) O(1) O(F 1/2) O(1) O(1)
Perturbation velocity O(1) O(1/F 2) O(1) O(1) O(F ) O(F )
Vertical displacement O(1) O(1/F ) O(F 2) O(F ) O(F 2) O(F 2)

Table 2. Order of magnitude of the motion in each region of the fluid, for a sphere. Lengths
are normalized by a and velocities by U . For weak stratification, at F � 1, the fluid separates
radially into an inner region, at O(1) distance from the centre of the sphere, with motion given
by (3.4), and an outer region, at O(F ) distance, with motion given by (6.21) in the far field.
For strong stratification, at F � 1, the fluid separates vertically into top and bottom layers at
O(F ) distance from the levels of the top and bottom of the sphere, respectively; upper and
lower layers at O(1) distance above and below these levels, respectively, with motion given
by (6.22) in the far field; and a middle layer at O(1) distance in between, with motion given
by (2.15b) and (3.7b). The top and bottom layers separate in turn horizontally into top and
bottom regions, at O(F 1/2) distance from the top and bottom, respectively, and shear layers, at
O(1) distance. The shear layers have the same dynamics as the upper and lower layers, except
with respect to the hydrostatic approximation; hence, for simplicity, in the rest of the paper
they have been omitted and classed implicitly alongside the upper and lower layers.

bottom layers with large amplitudes, and propagate in the upper and lower layers
with small amplitudes. Table 2 indicates, for both strongly and weakly stratified flows,
the different regions of the fluid and the order of magnitude of the motion in each
region.

7.2. Hydrostatic approximation

The second approximation, which we have not used, is the hydrostatic one,
presented in the Appendix. The drag coefficient (5.32) becomes, with the assumption
ξ = U |k|/N � 1,

CD =
32

π
F 2

∫ ∞

0

dξ

ξ 2

∫ ∞

1

dη

η4(η2 − 1)1/2
J 2

2

[
ξη

(
2

F

)1/2
]

, (7.1)

which is evaluated exactly as

CD =
211/2

15π
F 3/2, (7.2)

namely as the leading-order term (5.46) of the expansion (5.45) of the non-hydrostatic
drag coefficient at small F . The vertical displacement (6.22) becomes, with the
assumption |z| � rh1

,

ζ (x, t) ∼ 2
U 2

N2(x2
1 + y2)1/2

y2

x1z
J2

[(
2
Na

U

)1/2
x1z

y2

]
cos

[
N

U
(|z| − a)

(
1 +

x2
1

y2

)1/2
]

.

(7.3)
Figure 11 represents the associated displacement field in the horizontal plane z/a =5,
together with the amplitude factor

4F 2 J2(κh�
′)

(κh�′)2
with κh�

′ =

(
2

F

)1/2
x1|z|
y2

. (7.4)
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Figure 11. Hydrostatic approximation, for strongly stratified flow past a sphere, of (a) the
vertical displacement ζ/a and (b) the interference factor normalized by F 2/2, in the plane
z/a = 5 at F = 1/4. The dashed curves are the first three fringes of destructive interference.

Consistently with Smith (1980) and Baines (1995, § 6.1.4), the interference fringes are
turned into parabolae. For destructive interference, they have the equation

y2 =

(
2

F

)1/2
x1|z|
j2,n

, (7.5)

with n= 1, 2, 3, . . . , and j2,n the zeros of the Bessel function J2(x). The first three
such fringes are shown in figure 11(a); as n increases further, they become rapidly
indistinguishable from one another and accumulate near the plane y =0.

Classically, for parameters ε, F� and Fh, the hydrostatic approximation is considered
to require both F� � 1 and Fh =O(1), so that ε � 1, corresponding to region (iii) of
figure 2. The cut-off obstacles satisfy all three conditions. However, comparison of
the hydrostatic waves in figures 11(a) and 11(b) with the non-hydrostatic waves in
figures 9(f ) and 10(d ), respectively, shows that the hydrostatic approximation is valid
only outside, say, the first fringe of destructive interference; inside this fringe, the
amplitudes are underestimated close to the plane y = 0 and overestimated close to
the plane x1 = 0. From similar comparisons for a plane-mounted bell-shaped obstacle,
Smith (1980) has observed, theoretically, that the hydrostatic approximation describes
satisfactorily the motion of the fluid directly above the obstacle, and the first crest and
trough of the waves immediately behind it, but fails to account for the trailing waves
further downstream, while Miranda & James (1992) have observed, numerically, that
the area of validity of the hydrostatic approximation is displaced further away on
either side of the plane y = 0 as the vertical distance z from the obstacle increases.
Both observations are consistent with a criterion of validity involving the first fringe
of destructive interference.

This apparent paradox illustrates the deceptive nature of a priori simplifications to
a wave field, based on the comparison of fixed space and time scales: for dispersive
waves, the appropriate scales are the inverse wavenumber and frequency, respectively,
which vary spatially and temporally through the wave field; for them, the only
legitimate approach consists in looking for simplifications based on the spectrum of
the forcing, which determines the wavenumbers and frequencies actually radiated.
In particular, the spectrum (3.15) includes the Bessel function J2(κh�

′), implying that
only the wavenumbers such that κh�

′ � 1 contribute significantly to the radiation.
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For the drag coefficient (5.32), the condition κh�
′ � 1 is expressed in terms of the

variables ξ = U |k|/N and η = κh/|k| as

ξη �

(
F

2

)1/2

, (7.6)

with η > 1. Hence, for F � 1, the hydrostatic assumption ξ � 1 follows naturally. For
the vertical displacement (6.22), however, the condition κh�

′ � 1 is expressed in terms
of the position (x1, y, z) as

x1|z|
y2 + z2

[
1 + x2

1y
2/(y2 + z2)2

1 + x2
1/(y

2 + z2)

]1/2

�

(
F

2

)1/2

. (7.7)

Hence, for F � 1, the hydrostatic assumption |z| � (x2
1 + y2)1/2 is just one among

several ways to ensure that it is satisfied. Replacing, as a first approximation, (7.7) by
its hydrostatic form, namely

y2 �

(
2

F

)1/2

x1|z|, (7.8)

we recover the above criterion involving the parabolae (7.5).
Again, the explanation for the apparent paradox is found within the multilayer

structure of the flow, exhibited by Greenslade (1992, 1994) and Hunt et al. (1997) and
presented in § 3.2: the waves are hydrostatic in the top and bottom layers, whose small
thickness implies quasi-horizontal propagation, and non-hydrostatic in the upper and
lower layers. Taking into account the further horizontal decomposition of the top
and bottom layers into top and bottom regions close to the top and bottom of the
sphere, respectively, and shear layers away from them, as indicated in table 2, we
anticipate that the motion is nonlinear hydrostatic in the top and bottom regions,
linear hydrostatic in the shear layers, and linear non-hydrostatic in the upper and
lower layers.

8. Discussion and conclusions
Based on asymptotic analysis of the horizontal flow at velocity U of a stratified

fluid of buoyancy frequency N past a sphere of radius a, two distinct representations
of the sphere as a source of lee waves have been proposed in § 3, appropriate for
either weak or strong stratification and corresponding to either large or small internal
Froude number F = U/(Na), respectively. In the following, vertical displacements are
normalized by a and velocities by U , and the orders of magnitude are taken from
table 2.

For F � 1, the fluid separates into two regions radially: at distances r1 from the
centre of the sphere of the order of a, an inner region where the flow is essentially
unaffected by the stratification and reduces, to O(1), to the three-dimensional
irrotational flow (3.4), illustrated in figure 3; at distances r1 of the order of the
scale U/N of buoyancy-induced motion, an outer region with small-amplitude lee
waves of O(1/F ) vertical displacement (6.21) in the far field, illustrated in figures 8(c)
and 9(c). The waves propagate in the outer region, with small amplitudes, and are
generated by the vertical motion in the inner region. This leads to the identification
of the source (3.5) of the inner flow as the source of the waves.

For F � 1, the fluid separates into five layers vertically: at distances |z| from the
centre of the sphere smaller than (1 − F )a, a middle layer where the flow is essentially
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Obstacle Profile α β B

Semi-ellipsoid z = h

(
1 − x2

1 + y2

�2

)1/2
π

4
1

32
√

2

15π
≈ 0.96

Gaussian hill z = h exp

(
−x2

1 + y2

�2

) √
π

2
2

16

15
√

π
≈ 0.60

Witch of Agnesi z = h

(
1 +

x2
1 + y2

�2

)−3/2

1 3
8
√

2

15
√

3
≈ 0.43

Table 3. Wave drag coefficient CD at small F for typical obstacles of revolution of vertical
axis, height h, half-length � and locally paraboloidal shape at the summit. α is the ratio of the
area cross-section of the obstacle to the reference area 2h�, and β is the scaled curvature at
the summit defined according to (3.9). To leading order, CD ∼ BF 3/2 with B an O(1) positive
constant.

horizontal, around the sphere rather than over or under it, and reduces, to O(1), to the
two-dimensional horizontal irrotational flow (2.15b) with associated O(F 2) vertical
displacement (3.7b), illustrated in figure 4; at distances |z| between (1 − F )a and a,
top and bottom layers with O(F ) vertical displacement; at distances |z| larger than a,
upper and lower layers with small-amplitude lee waves of O(F 2) vertical displacement
(6.22) in the far field, illustrated in figures 8(f ) and 9(f ). The waves propagate in
the upper and lower layers, with small amplitudes, and are generated by the vertical
motion in the top and bottom layers, respectively. This leads to the identification
of the top and bottom portions of the sphere, lying above and below the dividing
streamsurfaces |z| =(1 − F )a separating the top and bottom layers from the middle
layer, respectively, as the source of the waves; these portions, illustrated in figure 5,
act as flat cut-off obstacles of representation (3.14).

The analysis has been validated by comparison of the prediction of the wave drag
in § 5 with the interpretation by Greenslade (2000), recalled and extended in § 1, of the
available measurements of the drag on a sphere. For F � 1, not only has the variation
of the wave drag coefficient CD as F 3/2 been recovered, but also the multiplier B in
front of the variation has been predicted analytically as (32

√
2)/(15π) ≈ 0.96. This

result may easily be generalized: a plane-mounted obstacle of revolution of vertical
axis, height h, half-length � and locally paraboloidal shape (3.9) at the summit
generates waves as the source (3.12) and has the wave drag coefficient

CD ∼ 8

15α

(
2

β

)1/2

F 3/2, (8.1)

with α the ratio of the area cross-section to the reference area 2h�, and β the scaled
curvature at the summit. As a consequence, not only does CD vary as F 3/2 irrespective
of the exact shape, but also B is independent of the aspect ratio ε. Table 3 illustrates
this for three typical obstacles, emphasizing in particular that, in this regime, any
semi-ellipsoid has the same CD as the hemisphere.

That being said, the intricacy of the mathematical procedure, involving Mellin–
Barnes integration in § 5, must not hide the essentially phenomenological nature
of the two representations of the sphere. For F � 1, the representation (3.5) is
based on the radial separation of the fluid into two regions, respectively inner and
outer, suggesting the application of the method of matched asymptotic expansions.
This method has been mentioned by Miles & Huppert (1969) for two-dimensional
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obstacles and Miles (1971) for three-dimensional obstacles, but so far it has only
been implemented by Baines & Grimshaw (1979) for two-dimensional obstacles. For
F � 1, the representation (3.14) is based on the vertical separation of the fluid into
five layers, in connection with the formation of dividing streamsurfaces. In each layer
the dominant mechanisms have been identified by Greenslade (1992, 1994) and Hunt
et al. (1997), and the equations of motion have been written, but these equations
remain to be solved and their solutions matched. Only such rigorous mathematical
derivation will be able to provide a definitive basis for the ideas developed in the
present paper.

Similarly, the derivation of expansions of the wave drag coefficient to all orders in § 5
may seem spurious, given the leading-order nature of the underlying representations
of the sphere. It is believed, however, that the ability to carry the expansions to
all orders will prove determinant when implementing proper asymptotic matching
between the motions in different regions of the fluid.

A more stringent validation is the comparison of the prediction of the wave
field in § 6 with its experimental and numerical determinations. Unfortunately, such
determinations are scarce in the literature for the sphere.

Early experiments have focused on schlieren visualization of the surfaces of constant
phase (Peat & Stevenson 1975; Makarov & Chashechkin 1981, 1982; Chashechkin
1989), sometimes complemented with point conductimetric measurement of the
amplitude (Makarov & Chashechkin 1981, 1982). Later, laser-induced fluorescence
has provided a spatial picture of this amplitude (Hopfinger et al. 1991; Bonneton
et al. 1993; Dupont & Voisin 1996). Figure 3 of Bonneton et al., in particular, shows
good overall agreement between the visualization of the vertical displacement in the
horizontal plane z/a = 3 and its prediction (6.20) for the dipole (3.1), at F =3.2 large
enough for the effect of the size of the sphere to be negligible within the field of
view. It is only very recently, however, that particle image velocimetry has allowed the
picture to become quantitative. Figures 3 and 4 of Rottman et al. (2004) exhibit, at
F = 1 and 2 in the horizontal plane z/a = 4, the consistency of the visualization of the
vertical displacement with its prediction (6.21) for the weakly stratified model (3.5),
after accounting for the formation of vertical modes due to the finite depth of the
experimental tank. More elaborate consideration of this depth, through the inclusion
of evanescent modes, is required before definitive conclusions can be drawn.

The only available numerical data are those of Hanazaki (1988). Figure 12(a, b)
represents, in the same conditions as his figure 3(c, f )(iii), respectively, the predicted
isopycnal lines.At F = 1, the O(1) inner flow (3.4) has been superposed everywhere
with the O(1/F ) far-field outer waves (6.21); at F = 1/4, the O(F 2) flow (3.7b) in the
middle layer has been complemented with the O(F 2) far-field waves (6.22) everywhere
in the upper and lower layers. Apart from an overestimation of the wavelength in
the theory, already noted by Hanazaki, the comparison exhibits reasonably good
agreement between theory and simulation a few radii away from the sphere. Closer
to the sphere, discrepancies are observed including unphysical large amplitudes and
crossings of the isopycnals in the theory: this exhibits the futility of applying a
far-field result in the near field, together with the need for proper solution of the
equations of motion and matching of the solutions in the different regions of the
fluid.

As a rule, based on the comparison of the measured and predicted drag coefficients
in figure 1, we may expect the large-F theory to be valid, say, at F � 1, and the small-
F theory, say, at the same time as Sheppard’s criterion for the dividing streamsurfaces,
namely for the sphere at F � 0.4. From a similar comparison, Greenslade (2000) has
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(a)

(b)

Figure 12. Isopycnals for the flow past a sphere, using (a) the weakly stratified model of § 3.1
at F =1 and (b) the strongly stratified model of § 3.2 at F =1/4. The isopycnals are drawn
in the vertical plane y = 0 and on the sphere surface. They are constructed by superposing in
(a) the O(1/F ) waves (6.21) with the O(1) flow (3.4), and in (b) the O(F 2) waves (6.22) for
|z| > a with the O(F 2) flow (3.7b) for |z| < a. The thick lines originate from the levels of the
top and bottom of the sphere at infinity upstream.

introduced the idea that, apart from a narrow intermediate range 0.8 <F < 1.1, the
large-F theory is valid for F > 1.1 and the small-F theory for F < 0.8.

Finally, it must be pointed out that the analysis has considered the wave
contribution to the drag exclusively, and omitted the wake contribution entirely.
In practice, consistently with Greenslade’s (2000) model (1.6), this latter contribution
is dominant at small F . The formation and shedding of vorticity in the lee of
obstacles in strongly stratified flow has been an area of active research for more than
two decades, with its origin in the experiments of Brighton (1978), Hunt & Snyder
(1980) and Castro et al. (1983), and in the numerical simulations of Smolarkiewicz
& Rotunno (1989) and Rotunno & Smolarkiewicz (1991); for recent advances and
detailed bibliographies, see the numerical simulations of Schär & Durran (1997),
Rotunno, Grubišić & Smolarkiewicz (1999), Vosper (2000) and Castro et al. (2001),
and the experiments of Vosper et al. (1999) and Castro et al. (2001).

Similarly, at large F , say for a sphere F � 4, the steady lee waves produced by
the flow in the immediate vicinity of the obstacle give way to so-called ‘random’
internal waves produced by the motion and collapse of the coherent structures of
the wake. This phenomenon has been observed experimentally for a slender body by
Gilreath & Brandt (1985), and investigated more thoroughly for a sphere by Sysoeva &
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Chashechkin (1986, 1991), Hopfinger et al. (1991), Bonneton et al. (1993, 1996), Lin,
Boyer & Fernando (1993) and Rottman et al. (2004), and for a bell-shaped obstacle by
Dupont, Kadri & Chomaz (2001). Wake-generated internal waves may also be seen
in the numerical simulations of Gourlay et al. (2001). The contribution of these waves
to the drag need not be considered explicitly, as it is already included in the wake
contribution. For the waves themselves, when the advection of the coherent structures
before their collapse is negligible, the forcing may be modelled as a source fixed with
respect to the obstacle and of strength oscillating at the frequency of vortex shedding,
a model mentioned first by Gilreath & Brandt (1985), developed later by Voisin
(1995) and Dupont & Voisin (1996), and applied recently by Rottman et al. (2004).

The author would like to thank Dr Michael Greenslade for advice and
encouragement, and for generously sharing his digitization of the data of Mason
and Lofquist & Purtell. Professors Valentin Gorodtsov, Yuli Chashechkin, Drs Olga
Shishkina, Evgeny Ermanyuk and Dave Broutman are thanked for stimulating
conversations and correspondence.

Appendix. Hydrostatic lee waves
The hydrostatic approximation lies in the omission of the vertical acceleration in

the Euler equation (4.1a). It is based on the assumption of low frequency |ω| � N or,
by the dispersion relation |ω| = Nκh/κ , quasi-horizontal propagation, namely quasi-
vertical wavenumber vector, such that κh � |m|, and quasi-horizontal group velocity.
The wave equation (4.3) simplifies to(

∂2

∂t2

∂2

∂z2
+ N2∇2

h

)
χ = q, (A 1)

with

ρ = ρ0

N2

g

∂2

∂t∂z
χ, p = −ρ0N

2 ∂

∂t
χ, u =

(
∂2

∂t2

∂

∂z
ez + N2∇h

)
χ. (A 2)

For horizontal motion of a body at velocity U , or for horizontal flow at velocity U

past an obstacle, another formulation of the assumption is, by the Doppler relation
ω = −Uk, the condition |k| � N/U that the waves are long in the streamwise direction.
The wave drag (5.5) simplifies to

D =
ρ0N

16π2U

∑
±

∫ ∞

−∞
dk

∫ ∞

−∞
dl

|q0(k±)|2
(k2 + l2)1/2

, (A 3)

with

k± =

[
k, l, ±N

U

(
1 +

l2

k2

)1/2
]

. (A 4)

Similarly, by the assumption |z| � rh1
of quasi-horizontal propagation, the vertical

displacement (6.19) simplifies to

ζ (x, t) ∼ − sign z

2πU |y|Im
{

q0(k, ts) exp

[
−i

N

U
|z|

(
1 +

x2
1

y2

)1/2
]}

, (A 5)

with

k =
N

U

(
1 +

x2
1

y2

)1/2
[

− x1|z|
x2

1 + y2
,

x2
1 |z|

y
(
x2

1 + y2
) , −sign z

]
. (A 6)
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